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Version history

VERSION DATE CHANGES
0.0 07/03/2025 First issue: input data for online workshop. Covers:

1. Introduction
2. The mapping process

3. Al technology breakdown (draft)
Other sections will be completed after the workshop.

11 After the online workshop, incorporating the changes agreed to
the technology map.

2.0 After the in-person workshop — draft final report made available
for comment by participants

2.1 Final report for publication
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Foreword

Will be completed after the workshop taking place in May 2025
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Executive summary

Will be completed after the workshop taking place in May 2025.
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1 Introduction
1.1 Context

In 2024, Fusion for Energy launched a Technology Development Programme (TDP) as part of the
implementation actions of its Industrial Policy. This TDP is dedicated to building and reinforcing
European Fusion Supply chain capabilities for those technologies that are deemed to be critical for the
future of commercial fusion. The programme requires the identification of key technologies to direct R&D
contracts to European contractors.

Prioritizing and allocating funding opportunities requires a comprehensive review of the involved
technologies on each major fusion technical domain. Doing this exercise in a collaborative way will
enable stakeholders to identify which technologies are fundamentally needed (technology mapping) and
when are they needed (technology road mapping). A roadmap built through consensus of key
stakeholders in the field can also serve as a powerful argument when seeking additional funding from
national and international public and private investors.

To coordinate these efforts, Fusion for Energy has launched a technology mapping initiative uniting
academia, research laboratories, industry, start-ups and the ITER Organization to develop a
comprehensive technology development roadmap for the application of Artificial Intelligence in Fusion
Technologies.

The outcome of this exercise will serve all stakeholders to guide their action in their respective domains,
allowing an effective investment of resources. Given the fast evolution of technology, a periodical follow-
up of the workshop outcome shall be assured in subsequent technology mapping exercises.

1.2 Artificial Intelligence technology mapping

The scope of the second such mapping exercise is the implementation of artificial intelligence in fusion
technologies. It covers the application of artificial intelligence in design and simulation, material
development, manufacturing and non-destructive testing (NDT) including assembly, and plasma science
and control.

The main associated event is a workshop held in April and May 2025 to generate most of the relevant
data and provide an opportunity for participants to network and exchange knowledge.

This document provides a complete overview of the exercise, detailing the process and scope through
a comprehensive technology breakdown, summarizing the meetings held and providing the resulting
proposed technology development roadmap.
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2 Technology mapping process

The technology mapping process consists of four stages.

Input report Online workshop In-person workshop Final report

2.1 Input report

In preparation of the exercise, staff from Fusion for Energy prepare a draft technology breakdown with
input from ITER Organization colleagues, listing technologies of interest and grouping them functionally.

This breakdown, together with a brief description of each selected technology, is included in a draft input
report (see section 3) for consultation by participants ahead of the first meeting (an online workshop).

2.2 Online workshop

The online workshop provides an opportunity for all participants in the technology mapping exercise to
come together. It typically lasts 6 to 7 hours and follows the agenda outlined below:

=  Welcome and introductory remarks

= The technology mapping process

= Introductory presentations about the field of interest

= Networking opportunity between participants

= Brief overview of technology breakdown

= Joint review of the technology breakdown

= Explanation of the in-person workshop

= Survey feedback and wrap-up

The main output of the online workshop is a comprehensive list of relevant technologies, agreed upon
by all participants. This breakdown serves as the foundation for the technology mapping, which is the
primary result of the initial workshop exercise. An updated version of the input report, including the
revised technology breakdown, is provided to participants prior to the in-person workshop.
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2.3 In-person workshop

The in-person workshop aims to provide a detailed characterization of the technologies outlined in the
breakdown agreed upon during the online workshop, including their prioritization and corresponding
timeline.

The characterization of technologies is carried out in three steps for each technology:
= Agreement on the current Technology Readiness Level (TRL) (see Appendix 1 for definitions)
= Definition of the next step (e.g., analysis, prototype, testing, industrialization plan, etc.)
= Quantification of the technology characteristics (see Appendix 2 for the proposed list of
characteristics to be evaluated)

Additionally, a timeline is developed, classifying what is needed and when for the technologies
considered in the technology mapping. Typical timelines may span 5, 15, or 30 years, or be categorized
into short, medium, and long-term periods.

The workshop is designed to be highly collaborative, with sessions that encourage participants to
exchange ideas, build consensus, and provide feedback on specific interests and the mapping process
itself. It also offers numerous opportunities for participants to share knowledge and establish
partnerships. The workshop typically lasts one and a half days, with designated times for both formal
and informal networking.

2.4 Final report

After the in-person workshop, staff from Fusion for Energy will compile the results into a final report,
which serves as an evolution of the input report. This report will provide an overview of European
capabilities in the field and include a proposed technology roadmap that outlines and prioritizes potential
actions for the period leading up to the next review, typically occurring within 1 to 2 years.

Participants are given an opportunity to comment before the final version of the report is published.
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3 Artificial Intelligence Breakdown
3.1 Artificial Intelligence overview

Artificial intelligence (Al) is transforming technology by enabling machines to perform tasks that
traditionally required human intelligence, such as problem-solving, decision-making, and pattern
recognition. From self-driving cars to medical diagnostics and advanced simulations, Al is revolutionizing
industries by automating complex processes and improving efficiency.

One of the most powerful approaches within Al is machine learning, which allows computers to learn
from data and improve their performance without explicit programming. Unlike traditional rule-based Al
systems, machine learning algorithms adapt and evolve through experience, making them highly
effective in processing large datasets and identifying patterns. There are different types of machine
learning, including supervised learning (trained on labelled data), unsupervised learning (finding hidden
structures in unlabelled data), and reinforcement learning (learning through trial and error). Machine
learning is a driving force behind many Al applications, such as trend identification, image recognition,
natural language processing, autonomous systems, and scientific research, accelerating advancements
in automation, prediction, data analysis, and problem-solving.
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3.2 Technical breakdown of applications

Artificial intelligence can be applied at various stages of the development process, from the initial
phases of design and simulation to operational applications.

This workshop focuses on five key stages in the development of fusion technologies:
= Design and simulation
= Material development
= Manufacturing, Non-Destructive Testing (NDT) and assembly
= Plasma science and control

The design and simulation stage is essential for developing fusion reactor concepts and testing their
viability before construction, as well as that of isolated components. Advanced simulations are used to
model plasma behavior, energy dynamics, and material interactions under fusion conditions. Engineers
design the reactor components, while simulations help optimize these designs to ensure efficiency,
stability, and safety during operation.

Material development focuses on creating substances that can endure the extreme conditions inside
a fusion reactor. These materials must withstand a hostile and unique environment: radiation, high
temperatures, and mechanical stress. Research involves identifying and testing radiation-resistant
alloys, superconducting materials for magnets, and new materials to improve reactor performance and
longevity.

The manufacturing, non-destructive testing (NDT) and assembly stage focuses on the precise
fabrication and assembly of fusion reactor components, including intricate parts such as vacuum vessel
sectors, superconducting magnets, plasma-facing elements, and cooling systems. Advanced
techniques like electron beam welding and phased-array ultrasonic testing enable the production of
complex and low-tolerance geometries that are challenging to achieve and inspect with traditional
methods. Ensuring precision and maintaining strict quality control to verify component integrity without
causing damage are essential to meet rigorous standards

Plasma science and control are central to achieving stable fusion reactions. This stage involves
managing and confining plasma at extremely high temperatures using magnetic fields. Early prediction
of instabilities can allow operators to react promptly and stabilize the plasma, avoiding its phase-out and
consequent loss. Researchers use advanced heating techniques to maintain the plasma's energy levels
and employ real-time monitoring to adjust control systems and maintain stability.

Several cross-cutting challenges should be considered when driving future directions:

- Data Scarcity and Quality: Obtaining sufficient high-quality labelled data, especially failure
data, for training robust Al models remains a challenge in these high-reliability sectors.
Techniques like transfer learning, data augmentation, and physics-informed Al are being
explored.

- Explainability and Trustworthiness (XAl): Due to the safety-critical nature, "black box" Al
models are often unacceptable. Research focuses on developing explainable Al methods to
understand and verify Al decision-making processes for regulatory acceptance and operator
trust [1].

- Validation, Verification, and Qualification: Rigorous processes are needed to validate Al
performance and qualify Al-based systems for use in nuclear and fusion applications, meeting
stringent industry standards.

- Integration and Radiation Hardening: Integrating Al systems with existing infrastructure and
ensuring the reliability of hardware (sensors, processors) in radiation environments are practical
hurdles.
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3.3 Priority Research Opportunities (PROs)?

Al advances, along with the urgency of need to bridge key gaps in knowledge for design and operation
of reactors such as ITER, have driven planned expansion of efforts in ML/Al within around the world
[1], and especially within Europe. This is the aim of this report: to map all Al developments for fusion,
to prioritize them according to the developments and needs of fusion energy in Europe and to conclude
with a roadmap, to be updated with the required frequency.

3.3.1 Science discovery with Machine Learning

Applying ML to analyze extensive datasets can bridge theoretical gaps, accelerate hypothesis
generation, and optimize experimental planning, enhancing understanding in areas like tokamak
confinement and plasma-wall interactions.

3.3.2 Machine Learning-Boosted Diagnostics

Utilizing ML to extract maximum information from diagnostics, improve interpretability through data-
driven models, integrate multiple data sources, and develop synthetic diagnostics to infer unmeasured
quantities, thereby enhancing plasma state identification and regime classification.

3.3.3 Model Extraction and Reduction

Developing data-driven models to elucidate complex plasma behaviors, quantify uncertainties, and
accelerate computational algorithms, facilitating faster simulations and improved comprehension of
phenomena such as turbulent transport and plasma heating.

3.3.4 Control Augmentation with Machine Learning

Enhancing plasma control by improving control models, creating real-time data analysis algorithms for
adaptive regulation, and optimizing plasma discharge trajectories, which is crucial for the effective
operation of fusion reactors.

3.3.5 Extreme Data Algorithms

Creating methods for in-situ analysis and reduction of large-scale simulation data, and efficiently
managing extensive experimental data, addressing challenges posed by the massive data volumes
expected from future fusion experiments and simulations.

3.3.6 Data-Enhanced Protection

Developing algorithms to predict key plasma phenomena and system states, enabling real-time and
offline monitoring and fault prediction, vital for preventing disruptions that could damage fusion devices.

3.3.7 Fusion Data Platform for Machine Learning Apps

Establishing a comprehensive system for managing, curating, and accessing fusion experimental and
simulation data, supporting scalable application of ML/Al methods to fusion challenges.

1 https://science.osti.gov/-/media/fes/pdf/workshop-
reports/FES ASCR_Machine Learning Report.pdf
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3.4 Map of individual applications

This section will be reviewed and completed during the online workshop on 08/04/2025.

3.4.1 Application of Al in design and simulation

= Fusion REactor Design and Assessment (FREDA) by Oak Ridge National Laboratory
o Al-powered simulation tool designed to accelerate and optimize fusion reactor design.
It integrates machine learning, high-performance computing, and multi-physics modeling to evaluate
reactor configurations, material performance, and operational efficiency.

https://www.ornl.gov/news/all-one-simulation-tool-enables-faster-smarter-fusion-reactor-design

= Digital twins
o virtual replicas of fusion reactors that continuously update based on real-world data.
These Al-driven models allow researchers to simulate and analyze reactor performance in real time,
optimizing design, predicting failures, and improving operational efficiency.

https://scientific-publications.ukaea.uk/papers/towards-a-fusion-component-digital-twin-virtual-test-
and-monitoring-of-components-in-chimera-by-systems-simulation/

=  ML-driven surrogate modelling (also used in digital twins)
o approximate complex physics simulations with faster, more computationally efficient
models
Traditional first-principles simulations, such as those used for plasma dynamics, turbulence, and
material interactions, can be computationally expensive and time-consuming.

In order to ensure the safe and efficient operation of a fusion device,
a multitude of sensors captures key information about the plasma and
wide range of machine subsystems. These sensors provide signals of
quantities like temperature, voltage, magnetic field, etc. More recently,
images and video data are increasingly produced. This leads to
massive volumes of data that need to be processed or analyzed in
detail. Furthermore, some measurements need to be available
routinely and processed with minimal delay, notably for feedback
control of the plasma state. In addition to data volume and
requirements on the processing speed, all measurements are affected
by uncertainty, to varying degrees. In other words, the raw
measurement taken by a sensor (usually a voltage) gives an estimate
of the properties of the plasma or machine components, but inevitably
this comes with some measurement error. Scientists often rely on
physical models to describe plasma behavior, but this also introduces
uncertainty, since no model is perfect.

To maximize the information from the sensor measurements, data
integration can play a key role. Referred to as sensor fusion in other
disciplines, like the development of self-driving cars, this refers to the
joint processing of data captured by multiple sensors. It exploits the
information about specific plasma quantities provided by multiple

Figure 1: Cross-section of a
. ) . ) . DEMO design with magnetic
diagnostics, each possibly relying on completely different sensors (colored dots around the

measurement principles (e.g. magnetics vs. spectroscopy). In fusion vacuum vessel). The estimated

central position (‘current centroid’)
of the plasma and its approximate
boundary are also indicated.

science, the methods of Bayesian inference have been commonly
used for this purpose, as they allow considering heterogeneous
sources of information, as well as physics constraints. For instance,
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Figure 1 shows a cross-section of the EU-DEMO, along with the locations (colored dots) of the sensors
that measure the magnetic field used to confine the plasma [2]. By merging the data from all sensors
using the Bayesian framework, an accurate reconstruction of the position of the plasma inside the torus
becomes possible. This is essential to avoid the hot plasma to touch the walls of the device.

Similar tools have been applied to measure the concentration of tungsten particles, originating from the
wall due to the constant plasma exposure. Figure 2 below shows an example of a build-up of tungsten
particles in the core plasma of the WEST tokamak, based on measurements of X-rays emitted by the
tungsten impurities [3]. Again, the probabilistic approach allows uncertainty estimates, visualized by the
error map in the right panel. Furthermore, experimental design can be used to optimize the viewing
geometry of the diagnostic.

Reconstructed ¢y, %10 Error map of ¢y, x10
1.0
0.08
0.5 0.8
0.06
_ 0.6
E
- 0.0 0.04
A 0.4
0.5 0.2 0.02
0.0 0.00
2.0 2.3 3.0 2.0 2.5 3.0
R (m) R (m)

Figure 2: Cross-section of the plasma of the WEST tokamak, showing the concentration cw of tungsten particles
(left panel) and the accompanying error map (right panel).

Another area where Al can help addressing technological challenges is in anomaly detection and
predictive maintenance. By using sensors to regularly or continuously monitor the condition of
equipment or products in an experimental setting or in a production environment, it is possible to train
a computer model to recognize abnormal events in the operation or the state of the monitored system.
This can make a crucial difference for protecting hardware or for quality assurance, either by raising an
alarm to allow human intervention, or by automatically activating countermeasures to restore the system
to its nominal state. Predictive maintenance is a strategy that takes this one step further: using statistics
or machine learning techniques, a computer can be trained to recognize early signs of an upcoming
anomaly or failure. The complex environment of a fusion device can greatly benefit from such new
techniques that are also quickly gaining popularity in many sectors of industry. Some concrete examples
are the operation of pumps ensuring the vacuum in fusion devices and large circuit breakers that are
essential for plasma start-up in tokamaks. A recent use case, illustrated in Figure 3 below, involves the
monitoring of wall components with infrared cameras, to detect or predict material overheating due to
plasma exposure [4]. Machine learning models like neural networks are especially well suited to pick
up subtle warning signs of an imminent failure, while still allowing sufficient time for taking effective
countermeasures.

L

=4

Figure 3: Experimental setup of two beryllium tiles (left panel) and infrared image during heat
loading (right panel).
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3.4.2 Application of Al in material development

Al is revolutionizing materials science by enabling the discovery of new materials, predicting their
properties, and qualifying them for codes and standards. State-of-the-art techniques leverage
machine learning models like Random Forest, Regression, Artificial Neural Networks (ANN), and K-
Nearest Neighbours (KNN). These models excel when large datasets are available, allowing
researchers to identify patterns, optimize material properties, and accelerate the development process.
Al has been used to characterise materials and understand material properties in some areas of
research, but not to its full potential.

The environment inside a fusion machine is hostile and unique: extreme temperatures resulting in high
thermal loads of materials, radiation and high mechanical loads, resulting in degradation of materials.
A precise characterisation of materials properties is crucial to estimate the impact of the environment
on the material and predict component durability and maintenance requirements. Large amounts of
resources are invested in material characterisation, especially when the material is to be qualified
according to a nuclear code, as is the case of protection-important components in a fusion machine.
Furthermore, mechanical properties are also crucial to estimate the forming capability of equipment and
for robust numerical modelling [5].

By organising large input datasets, Al is able to predict these material properties. Furthermore, this can
be used in the future to qualify materials for inclusion in nuclear design and manufacturing codes
(upcoming publication from F4E). Recently, some nuclear code associations have shown willingness to
include Al as a recognised digital technology for qualification, thereby reducing costs and time, while
still enabling a high level of quality and precision.

One example will be presented predicting fatigue and fracture properties.

However, challenges arise when data is sparse or incomplete. Predicting material behaviour beyond
known data ranges requires innovative approaches. Probabilistic methods can be combined with Al to
fill data gaps by generating synthetic datasets while maintaining dependencies. Physics can be
combined with Al through Physics-Informed Neural Networks (PINNs) where machine learning is
assisted with physical laws by embedding differential equations of the physics laws into the training
process. This integration enhances predictions for complex phenomena, even with limited or noisy data.
Two examples will be presented to illustrate these approaches.

These advancements are paving the way for breakthroughs in sustainable materials, energy storage,
and biomedical applications. The synergy between Al and materials science promises a future of rapid
innovation and transformative technologies.

We need these innovations because the development of new materials, particularly within the nuclear
sector, is associated with significant challenges. Material properties must be thoroughly characterized
following exposure to extreme conditions, including elevated temperatures and prolonged irradiation.
However, such data is scarce due to the high costs and specialized equipment required for post-
irradiation examination. Moreover, the nuclear industry is among the most stringently regulated sectors.
The codification of new materials necessitates extensive testing and validation processes, often
spanning decades, to achieve approval for inclusion in design codes and standards. This presentation
will give a glimpse of how these methodologies are being explored for expediting the approval process
for new materials by leveraging an innovative combination of probabilistic approaches, physics-based
modelling, and artificial intelligence (Al).

3.4.3 Application of Al in manufacturing and non-destructive testing

The fusion and nuclear industries are characterized by extreme operating conditions, complex large-
scale components, stringent safety regulations, and the need for high reliability and precision. Al,
encompassing machine learning (ML), deep learning (DL), computer vision, and robotics, offers
significant potential to address these challenges by enhancing efficiency, improving quality control,
ensuring safety, and managing the vast amounts of data generated throughout the component lifecycle
— from manufacturing and assembly to in-service inspection.

Al is naturally able to analyze patterns and trends with high accuracy, as long as the training dataset is
of good quality and representative of the population. It is indeed better than the human mind especially
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when the number of parameters impacting the result is higher than 2 or 3, as visibly recognizable by
the human mind, or higher than 4 or 5, as a human mind can manage. The quality of the data set is of
crucial importance and its collection and organisation is time-consuming. For this reason, little has been
done on the industrial side or academic research.

The manufacturing of components for nuclear reactors (fission) and experimental fusion devices (like
ITER) involves specialized materials and complex geometries, often pushing the boundaries of current
techniques. ITER has shown to be the perfect example since manufacturing has generated large
amounts of data, from which Al can help convert data and information into knowledge.

On joining processes such as welding, optimization of manufacturing parameters through Al allows to
re-introduce experience to feed the last step of quality control with the knowledge acquired. Even in
real-time, Al algorithms are used to optimize manufacturing parameters for processes like welding (e.g.,
Tungsten Inert Gas - TIG, Electron Beam Welding), additive manufacturing (AM, or 3D printing), and
machining. ML models can predict outcomes based on sensor data (temperature, acoustic emissions,
optical monitoring) and adjust parameters to maintain quality and minimize defects [6] [7]. For AM, Al
helps optimize build strategies, predict material properties, and detect flaws during the printing process.

Quality Assurance & Defect Prediction and identification: Computer vision systems powered by
deep learning (especially Convolutional Neural Networks - CNNs) are increasingly used for automated
surface inspection during or immediately after manufacturing. Data analysis can be used to validate the
NDT acquisition, such as that of the complex, highly sensitive and otherwise time-consuming PAUT [8].
ML models can also analyze process data to predict the likelihood of internal defects or deviations from
tolerance, reducing the need for costly post-process inspection [9]. Deep learning models (CNNs for
image-based NDT like radiography or visual testing; Recurrent Neural Networks - RNNs or specialized
architectures for signal-based NDT like ultrasonic testing - UT) are trained to automatically detect,
locate, and classify defects (cracks, porosity, inclusions, corrosion) with higher speed and potentially
greater consistency than human inspectors [10] [11].

In view of maintenance of reactors, by analyzing trends in NDT data over time, ML models can
contribute to predicting the remaining useful life of components, supporting aging management
programs crucial for nuclear power plant life extension and fusion device maintenance planning [12].

While less prominent in academic literature specifically for nuclear/fusion component manufacturing Al,
general Al applications in supply chain optimization could be adapted for managing the complex
logistics of specialized materials and sub-components.

3.4.4 Application of Al in plasma science and control

= Predictive modelling in plasma instabilities and disruption analysis
o Neural state-space model that predicts plasma dynamics during ramp downs

https://www.researchgate.net/publication/389129708 Learning Plasma Dynamics and Robust Ram
pdown Trajectories with Predict-First Experiments at TCV

= Trajectory planning enabled by ML/AI

o reinforcement learning (RL) approach to safely ramp down plasma current while
avoiding disruption-related limits, using a hybrid physics and machine learning model

https://www.researchgate.net/publication/385645875 Active Disruption Avoidance and Trajectory
Design for Tokamak Ramp-
downs with Neural Differential Equations and Reinforcement Learning

= Fusion data platform for ML applications
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4 Summary of meetings

Will be completed after the workshop taking place in May 2025.

5 Outcome: technology road-mapping

Will be completed after the workshop taking place in May 2025.

6 Conclusion

Will be completed after the workshop taking place in May 2025.

Al is rapidly becoming an indispensable tool for the demanding fusion and nuclear industries. State-of-
the-art research focuses on leveraging ML and DL for process control, automated inspection, enhanced
robotic capabilities, and predictive maintenance. While significant progress has been made, addressing
challenges related to data, explainability, and qualification is crucial for the widespread, safe, and
reliable deployment of these powerful technologies.
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Appendix 1: Technology
Readiness Levels

2025 series

For this workshop, a TRL scale from 1 to 9 will be used, in line with the IAEA definitions2.

It considers the different criteria for different streams as illustrated in the table below extracted from the
document in reference. By default, the “System” stream will be used. For more details, please refer to

the TECDOC 2047 itself.

Svitems
1 Basic prmmeiples

]

Technology
concept

3 Proof of concept

4 Wahdation in a
laboratory
enviromment

5 Partal system
vabdation m a
relevant
enviromment

& Prototype demo in
a relevant
enviromment

7 Prototype demo 1n
an operational
environment

B Test and
demonstration
9 Successful

mission operation

MMaterials
Ewvidence
from
hiterature
Agread
property
targets, cost
& timescales
Materials’
capability
based on lab
scale samples.

Desizn curves
produced.

Methods for
material
processing
and
component
manufacture

Vahdated via
component
and/or sub-
element
testing.

Evaluated in
development

1ig tests

Full
operztional
test

Produchion
ready material

Software

Mathematical
formulation

Algonthm
implementation
documesnted

Prototype
archrtectural desizn
of mportant
funchons 15
documented
ALPHA version
with most
funchonalities
implemented with
Uzer Manual and
Design File
available

BETA wversion with
complete software
funchonalibies,
documentation, test
reports and
application
examples avallable
Product release
ready for
operational use

Early adopter
version qualified
for a particular
purpose

General product
ready to be applied
in a real applhication

Live product with
full documentation
and track record
available

AManufacturing
Process concept
proposed

WValidity of
concept
deseribad

Expenmental
proof of concept
completed

Process
vahdated mm lab

Basic capabality
demonstrated

usng producton

equipment

Process
optmmised for
capabulity and
rate using
production
equIpment
Economic run
lengths on

production parts

Sipmificant run

lengths

Demonstrated

over an extended

penod

Instrumentation
Understand the
physics

Concept designed

Lab test to prove the
concept works.

Lab demonstration
of highest nisk

components

Requnng speciahist

Applied to realistic
lacation/environment
with low level of
specialist support.

Successful
demonstration n
fest.

Demonstrated
productionised

system

Service proven

2 |AEA TECDOC 2047: Considerations of TRL for Fusion Technology Components
Available at https://www-pub.iaea.org/MTCD/Publications/PDF/TE-2047web.pdf
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Appendix 2: Technology assessment

1. Added-Value Towards Nuclear Fusion

Availability of alternative solutions

Yes/No (Outside EU)

Criterion Scale Explanation
Does this technology address a
Need for and potential benefit Major / Medium / Minor critical and unresolved challenge
in nuclear fusion?
Yes/No (EU) Are there competing solutions in

Europe or globally?

Differentiation / Competitive

Does this technology offer a

Yes / No unique advantage over existing
Advantage solutions?
2. Maturity & Feasibility
Criterion Scale Explanation
Technology Readiness Level (TRL) 109 Sap AL spal = (=2
Appendix).

Expected time to TRL 9 (full maturity)

<5 years / 5-15 years / >15

How long until the technology is

years commercially viable?
Are there existing facilities in
Availability of test facilities Yes / No Europe to validate the
technology?
3. Interest from the Innovation Ecosystem
Criterion Scale Explanation

Interest from start-ups

None / 1-3 interested parties
/ >3 interested parties

Level of engagement from early-
stage companies.

Interest from industry

None / 1-3 interested parties
/ >3 interested parties

Level of interest from established
industry players.

Interest from research institutions

None / 1-3 interested parties
/ >3 interested parties

Interest from universities, national
labs, and research centres.

4. Other Investment Decision-Making Factors

Criterion Scale Explanation
. Nuclerusin-specic || 5172 echnobay edte
Market potential Wider market potential ’

applications?

Competences & skills development

Will this technology enhance

Yes / No European expertise in fusion?
R lat . t Does the technology pose
egulatory impac Yes/No significant regulatory challenges?

5. Risk, Cost, and Implementation Timeline of Next

Step on Roadmap

Criterion Scale Explanation
Low risk / Medium risk / How uncertain are the results of
Outcome predictability & risks High risk the next development?
0-500k EUR / 501k-2M Rough cost estimate for next
Estimated development cost EUR/>2M EUR development step.
<1year/1-2 years/ Timeframe for delivering tangible
Time to first output (once funded) >2 years results.
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