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Version history 
 

VERSION DATE CHANGES 
0.0 07/03/2025 First issue: input data for online workshop. Covers: 

1. Introduction 
2. The mapping process 
3. AI technology breakdown (draft)  

Other sections will be completed after the workshop. 
1.1  After the online workshop, incorporating the changes agreed to 

the technology map. 
2.0  After the in-person workshop – draft final report made available 

for comment by participants 
2.1  Final report for publication 
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Foreword 
 
Will be completed after the workshop taking place in May 2025 
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Executive summary 
 
Will be completed after the workshop taking place in May 2025. 
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1 Introduction 
1.1 Context 
 

 
 
In 2024, Fusion for Energy launched a Technology Development Programme (TDP) as part of the 
implementation actions of its Industrial Policy. This TDP is dedicated to building and reinforcing 
European Fusion Supply chain capabilities for those technologies that are deemed to be critical for the 
future of commercial fusion. The programme requires the identification of key technologies to direct R&D 
contracts to European contractors. 
 
Prioritizing and allocating funding opportunities requires a comprehensive review of the involved 
technologies on each major fusion technical domain. Doing this exercise in a collaborative way will 
enable stakeholders to identify which technologies are fundamentally needed (technology mapping) and 
when are they needed (technology road mapping). A roadmap built through consensus of key 
stakeholders in the field can also serve as a powerful argument when seeking additional funding from 
national and international public and private investors. 
 
To coordinate these efforts, Fusion for Energy has launched a technology mapping initiative uniting 
academia, research laboratories, industry, start-ups and the ITER Organization to develop a 
comprehensive technology development roadmap for the application of Artificial Intelligence in Fusion 
Technologies. 
 
The outcome of this exercise will serve all stakeholders to guide their action in their respective domains, 
allowing an effective investment of resources. Given the fast evolution of technology, a periodical follow- 
up of the workshop outcome shall be assured in subsequent technology mapping exercises. 
 

 

1.2 Artificial Intelligence technology mapping 
 

 
The scope of the second such mapping exercise is the implementation of artificial intelligence in fusion 
technologies. It covers the application of artificial intelligence in design and simulation, material 
development, manufacturing and non-destructive testing (NDT) including assembly, and plasma science 
and control. 
 
The main associated event is a workshop held in April and May 2025 to generate most of the relevant 
data and provide an opportunity for participants to network and exchange knowledge. 
 
This document provides a complete overview of the exercise, detailing the process and scope through 
a comprehensive technology breakdown, summarizing the meetings held and providing the resulting 
proposed technology development roadmap. 
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2 Technology mapping process 
 

The technology mapping process consists of four stages. 
 
 
 

 
 

 
 
 
 
 
 
2.1 Input report 
 

 
In preparation of the exercise, staff from Fusion for Energy prepare a draft technology breakdown with 
input from ITER Organization colleagues, listing technologies of interest and grouping them functionally. 

 
This breakdown, together with a brief description of each selected technology, is included in a draft input 
report (see section 3) for consultation by participants ahead of the first meeting (an online workshop). 
 

 

2.2 Online workshop 
 

 
The online workshop provides an opportunity for all participants in the technology mapping exercise to 
come together. It typically lasts 6 to 7 hours and follows the agenda outlined below: 

 Welcome and introductory remarks 
 The technology mapping process 
 Introductory presentations about the field of interest 
 Networking opportunity between participants 
 Brief overview of technology breakdown 
 Joint review of the technology breakdown 
 Explanation of the in-person workshop 
 Survey feedback and wrap-up 

 
The main output of the online workshop is a comprehensive list of relevant technologies, agreed upon 
by all participants. This breakdown serves as the foundation for the technology mapping, which is the 
primary result of the initial workshop exercise. An updated version of the input report, including the 
revised technology breakdown, is provided to participants prior to the in-person workshop.

Input report 
Draft technology 

breakdown 

Online workshop 
Complete 
technology 
breakdown 

In-person workshop 
Characterization of 

technologies 

Final report 
Technology 

roadmap 
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2.3 In-person workshop 
 

 
The in-person workshop aims to provide a detailed characterization of the technologies outlined in the 
breakdown agreed upon during the online workshop, including their prioritization and corresponding 
timeline. 

 
The characterization of technologies is carried out in three steps for each technology: 

 Agreement on the current Technology Readiness Level (TRL) (see Appendix 1 for definitions) 
 Definition of the next step (e.g., analysis, prototype, testing, industrialization plan, etc.) 
 Quantification of the technology characteristics (see Appendix 2 for the proposed list of 

characteristics to be evaluated) 
 
Additionally, a timeline is developed, classifying what is needed and when for the technologies 
considered in the technology mapping. Typical timelines may span 5, 15, or 30 years, or be categorized 
into short, medium, and long-term periods. 
 

The workshop is designed to be highly collaborative, with sessions that encourage participants to 
exchange ideas, build consensus, and provide feedback on specific interests and the mapping process 
itself. It also offers numerous opportunities for participants to share knowledge and establish 
partnerships. The workshop typically lasts one and a half days, with designated times for both formal 
and informal networking. 

 

2.4 Final report 
 

 
After the in-person workshop, staff from Fusion for Energy will compile the results into a final report, 
which serves as an evolution of the input report. This report will provide an overview of European 
capabilities in the field and include a proposed technology roadmap that outlines and prioritizes potential 
actions for the period leading up to the next review, typically occurring within 1 to 2 years. 

 
Participants are given an opportunity to comment before the final version of the report is published. 
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3 Artificial Intelligence Breakdown 
3.1 Artificial Intelligence overview 
 

 
Artificial intelligence (AI) is transforming technology by enabling machines to perform tasks that 
traditionally required human intelligence, such as problem-solving, decision-making, and pattern 
recognition. From self-driving cars to medical diagnostics and advanced simulations, AI is revolutionizing 
industries by automating complex processes and improving efficiency.  
 
One of the most powerful approaches within AI is machine learning, which allows computers to learn 
from data and improve their performance without explicit programming. Unlike traditional rule-based AI 
systems, machine learning algorithms adapt and evolve through experience, making them highly 
effective in processing large datasets and identifying patterns. There are different types of machine 
learning, including supervised learning (trained on labelled data), unsupervised learning (finding hidden 
structures in unlabelled data), and reinforcement learning (learning through trial and error). Machine 
learning is a driving force behind many AI applications, such as trend identification, image recognition, 
natural language processing, autonomous systems, and scientific research, accelerating advancements 
in automation, prediction, data analysis, and problem-solving. 
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3.2 Technical breakdown of applications 
 
Artificial intelligence can be applied at various stages of the development process, from the initial 
phases of design and simulation to operational applications. 
This workshop focuses on five key stages in the development of fusion technologies: 

 Design and simulation 
 Material development 
 Manufacturing, Non-Destructive Testing (NDT) and assembly 
 Plasma science and control 

 
The design and simulation stage is essential for developing fusion reactor concepts and testing their 
viability before construction, as well as that of isolated components. Advanced simulations are used to 
model plasma behavior, energy dynamics, and material interactions under fusion conditions. Engineers 
design the reactor components, while simulations help optimize these designs to ensure efficiency, 
stability, and safety during operation. 
 
Material development focuses on creating substances that can endure the extreme conditions inside 
a fusion reactor. These materials must withstand a hostile and unique environment: radiation, high 
temperatures, and mechanical stress. Research involves identifying and testing radiation-resistant 
alloys, superconducting materials for magnets, and new materials to improve reactor performance and 
longevity. 
 
The manufacturing, non-destructive testing (NDT) and assembly stage focuses on the precise 
fabrication and assembly of fusion reactor components, including intricate parts such as vacuum vessel 
sectors, superconducting magnets, plasma-facing elements, and cooling systems. Advanced 
techniques like electron beam welding and phased-array ultrasonic testing enable the production of 
complex and low-tolerance geometries that are challenging to achieve and inspect with traditional 
methods. Ensuring precision and maintaining strict quality control to verify component integrity without 
causing damage are essential to meet rigorous standards 
 
Plasma science and control are central to achieving stable fusion reactions. This stage involves 
managing and confining plasma at extremely high temperatures using magnetic fields. Early prediction 
of instabilities can allow operators to react promptly and stabilize the plasma, avoiding its phase-out and 
consequent loss. Researchers use advanced heating techniques to maintain the plasma's energy levels 
and employ real-time monitoring to adjust control systems and maintain stability. 
 
Several cross-cutting challenges should be considered when driving future directions: 

- Data Scarcity and Quality: Obtaining sufficient high-quality labelled data, especially failure 
data, for training robust AI models remains a challenge in these high-reliability sectors. 
Techniques like transfer learning, data augmentation, and physics-informed AI are being 
explored.  

- Explainability and Trustworthiness (XAI): Due to the safety-critical nature, "black box" AI 
models are often unacceptable. Research focuses on developing explainable AI methods to 
understand and verify AI decision-making processes for regulatory acceptance and operator 
trust [1]. 

- Validation, Verification, and Qualification: Rigorous processes are needed to validate AI 
performance and qualify AI-based systems for use in nuclear and fusion applications, meeting 
stringent industry standards.  

- Integration and Radiation Hardening: Integrating AI systems with existing infrastructure and 
ensuring the reliability of hardware (sensors, processors) in radiation environments are practical 
hurdles. 



ARTIFICIAL INTELLIGENCE TECHNOLOGY MAPPING 2025 series 

 

Page 11 of 20 

3.3 Priority Research Opportunities (PROs)1 
 
AI advances, along with the urgency of need to bridge key gaps in knowledge for design and operation 
of reactors such as ITER, have driven planned expansion of efforts in ML/AI within around the world 
[1], and especially within Europe. This is the aim of this report: to map all AI developments for fusion, 
to prioritize them according to the developments and needs of fusion energy in Europe and to conclude 
with a roadmap, to be updated with the required frequency.  
 
3.3.1 Science discovery with Machine Learning 
 
Applying ML to analyze extensive datasets can bridge theoretical gaps, accelerate hypothesis 
generation, and optimize experimental planning, enhancing understanding in areas like tokamak 
confinement and plasma-wall interactions. 
 
3.3.2 Machine Learning-Boosted Diagnostics 
 
Utilizing ML to extract maximum information from diagnostics, improve interpretability through data-
driven models, integrate multiple data sources, and develop synthetic diagnostics to infer unmeasured 
quantities, thereby enhancing plasma state identification and regime classification. 
 
3.3.3 Model Extraction and Reduction 
 
Developing data-driven models to elucidate complex plasma behaviors, quantify uncertainties, and 
accelerate computational algorithms, facilitating faster simulations and improved comprehension of 
phenomena such as turbulent transport and plasma heating. 
 
3.3.4 Control Augmentation with Machine Learning 
 
Enhancing plasma control by improving control models, creating real-time data analysis algorithms for 
adaptive regulation, and optimizing plasma discharge trajectories, which is crucial for the effective 
operation of fusion reactors. 
 
3.3.5 Extreme Data Algorithms 
 
Creating methods for in-situ analysis and reduction of large-scale simulation data, and efficiently 
managing extensive experimental data, addressing challenges posed by the massive data volumes 
expected from future fusion experiments and simulations. 
 
3.3.6 Data-Enhanced Protection 
 
Developing algorithms to predict key plasma phenomena and system states, enabling real-time and 
offline monitoring and fault prediction, vital for preventing disruptions that could damage fusion devices. 
 
3.3.7 Fusion Data Platform for Machine Learning Apps 
 
Establishing a comprehensive system for managing, curating, and accessing fusion experimental and 
simulation data, supporting scalable application of ML/AI methods to fusion challenges. 
 
  

 
1 https://science.osti.gov/-/media/fes/pdf/workshop-
reports/FES_ASCR_Machine_Learning_Report.pdf 

https://science.osti.gov/-/media/fes/pdf/workshop-reports/FES_ASCR_Machine_Learning_Report.pdf
https://science.osti.gov/-/media/fes/pdf/workshop-reports/FES_ASCR_Machine_Learning_Report.pdf
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3.4 Map of individual applications 
This section will be reviewed and completed during the online workshop on 08/04/2025. 

 
3.4.1 Application of AI in design and simulation 
 

 Fusion REactor Design and Assessment (FREDA) by Oak Ridge National Laboratory 
o AI-powered simulation tool designed to accelerate and optimize fusion reactor design. 

It integrates machine learning, high-performance computing, and multi-physics modeling to evaluate 
reactor configurations, material performance, and operational efficiency. 
 
https://www.ornl.gov/news/all-one-simulation-tool-enables-faster-smarter-fusion-reactor-design  
 

 Digital twins 
o virtual replicas of fusion reactors that continuously update based on real-world data. 

These AI-driven models allow researchers to simulate and analyze reactor performance in real time, 
optimizing design, predicting failures, and improving operational efficiency. 
 
https://scientific-publications.ukaea.uk/papers/towards-a-fusion-component-digital-twin-virtual-test-
and-monitoring-of-components-in-chimera-by-systems-simulation/  
 

 ML-driven surrogate modelling (also used in digital twins) 
o approximate complex physics simulations with faster, more computationally efficient 

models 
Traditional first-principles simulations, such as those used for plasma dynamics, turbulence, and 
material interactions, can be computationally expensive and time-consuming. 
 
 
In order to ensure the safe and efficient operation of a fusion device, 
a multitude of sensors captures key information about the plasma and 
wide range of machine subsystems. These sensors provide signals of 
quantities like temperature, voltage, magnetic field, etc. More recently, 
images and video data are increasingly produced. This leads to 
massive volumes of data that need to be processed or analyzed in 
detail. Furthermore, some measurements need to be available 
routinely and processed with minimal delay, notably for feedback 
control of the plasma state. In addition to data volume and 
requirements on the processing speed, all measurements are affected 
by uncertainty, to varying degrees. In other words, the raw 
measurement taken by a sensor (usually a voltage) gives an estimate 
of the properties of the plasma or machine components, but inevitably 
this comes with some measurement error. Scientists often rely on 
physical models to describe plasma behavior, but this also introduces 
uncertainty, since no model is perfect. 
 
To maximize the information from the sensor measurements, data 
integration can play a key role. Referred to as sensor fusion in other 
disciplines, like the development of self-driving cars, this refers to the 
joint processing of data captured by multiple sensors. It exploits the 
information about specific plasma quantities provided by multiple 
diagnostics, each possibly relying on completely different 
measurement principles (e.g. magnetics vs. spectroscopy). In fusion 
science, the methods of Bayesian inference have been commonly 
used for this purpose, as they allow considering heterogeneous 
sources of information, as well as physics constraints. For instance, 

Figure 1: Cross-section of a 
DEMO design with magnetic 
sensors (colored dots around the 
vacuum vessel). The estimated 
central position ('current centroid') 
of the plasma and its approximate 
boundary are also indicated. 

https://www.ornl.gov/news/all-one-simulation-tool-enables-faster-smarter-fusion-reactor-design
https://scientific-publications.ukaea.uk/papers/towards-a-fusion-component-digital-twin-virtual-test-and-monitoring-of-components-in-chimera-by-systems-simulation/
https://scientific-publications.ukaea.uk/papers/towards-a-fusion-component-digital-twin-virtual-test-and-monitoring-of-components-in-chimera-by-systems-simulation/
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Figure 1 shows a cross-section of the EU-DEMO, along with the locations (colored dots) of the sensors 
that measure the magnetic field used to confine the plasma [2]. By merging the data from all sensors 
using the Bayesian framework, an accurate reconstruction of the position of the plasma inside the torus 
becomes possible. This is essential to avoid the hot plasma to touch the walls of the device.  
 
Similar tools have been applied to measure the concentration of tungsten particles, originating from the 
wall due to the constant plasma exposure. Figure 2 below shows an example of a build-up of tungsten 
particles in the core plasma of the WEST tokamak, based on measurements of X-rays emitted by the 
tungsten impurities [3]. Again, the probabilistic approach allows uncertainty estimates, visualized by the 
error map in the right panel. Furthermore, experimental design can be used to optimize the viewing 
geometry of the diagnostic. 
 

 
Figure 2: Cross-section of the plasma of the WEST tokamak, showing the concentration cw of tungsten particles 

(left panel) and the accompanying error map (right panel). 

Another area where AI can help addressing technological challenges is in anomaly detection and 
predictive maintenance. By using sensors to regularly or continuously monitor the condition of 
equipment or products in an experimental setting or in a production environment, it is possible to train 
a computer model to recognize abnormal events in the operation or the state of the monitored system. 
This can make a crucial difference for protecting hardware or for quality assurance, either by raising an 
alarm to allow human intervention, or by automatically activating countermeasures to restore the system 
to its nominal state. Predictive maintenance is a strategy that takes this one step further: using statistics 
or machine learning techniques, a computer can be trained to recognize early signs of an upcoming 
anomaly or failure. The complex environment of a fusion device can greatly benefit from such new 
techniques that are also quickly gaining popularity in many sectors of industry. Some concrete examples 
are the operation of pumps ensuring the vacuum in fusion devices and large circuit breakers that are 
essential for plasma start-up in tokamaks. A recent use case, illustrated in Figure 3 below, involves the 
monitoring of wall components with infrared cameras, to detect or predict material overheating due to 
plasma exposure [4]. Machine learning models like neural networks are especially well suited to pick 
up subtle warning signs of an imminent failure, while still allowing sufficient time for taking effective 
countermeasures. 
 
 
 
 
 
 
 

 
 

Figure 3: Experimental setup of two beryllium tiles (left panel) and infrared image during heat 
loading (right panel). 
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3.4.2 Application of AI in material development 
 

AI is revolutionizing materials science by enabling the discovery of new materials, predicting their 
properties, and qualifying them for codes and standards. State-of-the-art techniques leverage 
machine learning models like Random Forest, Regression, Artificial Neural Networks (ANN), and K-
Nearest Neighbours (KNN). These models excel when large datasets are available, allowing 
researchers to identify patterns, optimize material properties, and accelerate the development process. 
AI has been used to characterise materials and understand material properties in some areas of 
research, but not to its full potential.  

The environment inside a fusion machine is hostile and unique: extreme temperatures resulting in high 
thermal loads of materials, radiation and high mechanical loads, resulting in degradation of materials. 
A precise characterisation of materials properties is crucial to estimate the impact of the environment 
on the material and predict component durability and maintenance requirements. Large amounts of 
resources are invested in material characterisation, especially when the material is to be qualified 
according to a nuclear code, as is the case of protection-important components in a fusion machine. 
Furthermore, mechanical properties are also crucial to estimate the forming capability of equipment and 
for robust numerical modelling [5]. 

By organising large input datasets, AI is able to predict these material properties. Furthermore, this can 
be used in the future to qualify materials for inclusion in nuclear design and manufacturing codes 
(upcoming publication from F4E). Recently, some nuclear code associations have shown willingness to 
include AI as a recognised digital technology for qualification, thereby reducing costs and time, while 
still enabling a high level of quality and precision. 

One example will be presented predicting fatigue and fracture properties. 

However, challenges arise when data is sparse or incomplete. Predicting material behaviour beyond 
known data ranges requires innovative approaches. Probabilistic methods can be combined with AI to 
fill data gaps by generating synthetic datasets while maintaining dependencies. Physics can be 
combined with AI through Physics-Informed Neural Networks (PINNs) where machine learning is 
assisted with physical laws by embedding differential equations of the physics laws into the training 
process. This integration enhances predictions for complex phenomena, even with limited or noisy data. 
Two examples will be presented to illustrate these approaches. 

These advancements are paving the way for breakthroughs in sustainable materials, energy storage, 
and biomedical applications. The synergy between AI and materials science promises a future of rapid 
innovation and transformative technologies. 

We need these innovations because the development of new materials, particularly within the nuclear 
sector, is associated with significant challenges. Material properties must be thoroughly characterized 
following exposure to extreme conditions, including elevated temperatures and prolonged irradiation. 
However, such data is scarce due to the high costs and specialized equipment required for post-
irradiation examination. Moreover, the nuclear industry is among the most stringently regulated sectors. 
The codification of new materials necessitates extensive testing and validation processes, often 
spanning decades, to achieve approval for inclusion in design codes and standards. This presentation 
will give a glimpse of how these methodologies are being explored for expediting the approval process 
for new materials by leveraging an innovative combination of probabilistic approaches, physics-based 
modelling, and artificial intelligence (AI). 
 

 
3.4.3 Application of AI in manufacturing and non-destructive testing 
The fusion and nuclear industries are characterized by extreme operating conditions, complex large-
scale components, stringent safety regulations, and the need for high reliability and precision. AI, 
encompassing machine learning (ML), deep learning (DL), computer vision, and robotics, offers 
significant potential to address these challenges by enhancing efficiency, improving quality control, 
ensuring safety, and managing the vast amounts of data generated throughout the component lifecycle 
– from manufacturing and assembly to in-service inspection. 
 
AI is naturally able to analyze patterns and trends with high accuracy, as long as the training dataset is 
of good quality and representative of the population. It is indeed better than the human mind especially 
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when the number of parameters impacting the result is higher than 2 or 3, as visibly recognizable by 
the human mind, or higher than 4 or 5, as a human mind can manage. The quality of the data set is of 
crucial importance and its collection and organisation is time-consuming. For this reason, little has been 
done on the industrial side or academic research. 
 
The manufacturing of components for nuclear reactors (fission) and experimental fusion devices (like 
ITER) involves specialized materials and complex geometries, often pushing the boundaries of current 
techniques. ITER has shown to be the perfect example since manufacturing has generated large 
amounts of data, from which AI can help convert data and information into knowledge. 
 
On joining processes such as welding, optimization of manufacturing parameters through AI allows to 
re-introduce experience to feed the last step of quality control with the knowledge acquired. Even in 
real-time, AI algorithms are used to optimize manufacturing parameters for processes like welding (e.g., 
Tungsten Inert Gas - TIG, Electron Beam Welding), additive manufacturing (AM, or 3D printing), and 
machining. ML models can predict outcomes based on sensor data (temperature, acoustic emissions, 
optical monitoring) and adjust parameters to maintain quality and minimize defects [6] [7]. For AM, AI 
helps optimize build strategies, predict material properties, and detect flaws during the printing process. 
 
Quality Assurance & Defect Prediction and identification: Computer vision systems powered by 
deep learning (especially Convolutional Neural Networks - CNNs) are increasingly used for automated 
surface inspection during or immediately after manufacturing. Data analysis can be used to validate the 
NDT acquisition, such as that of the complex, highly sensitive and otherwise time-consuming PAUT [8]. 
ML models can also analyze process data to predict the likelihood of internal defects or deviations from 
tolerance, reducing the need for costly post-process inspection [9]. Deep learning models (CNNs for 
image-based NDT like radiography or visual testing; Recurrent Neural Networks - RNNs or specialized 
architectures for signal-based NDT like ultrasonic testing - UT) are trained to automatically detect, 
locate, and classify defects (cracks, porosity, inclusions, corrosion) with higher speed and potentially 
greater consistency than human inspectors [10] [11]. 
 
In view of maintenance of reactors, by analyzing trends in NDT data over time, ML models can 
contribute to predicting the remaining useful life of components, supporting aging management 
programs crucial for nuclear power plant life extension and fusion device maintenance planning [12]. 
 
While less prominent in academic literature specifically for nuclear/fusion component manufacturing AI, 
general AI applications in supply chain optimization could be adapted for managing the complex 
logistics of specialized materials and sub-components. 
 
 
 
3.4.4 Application of AI in plasma science and control 
 

 Predictive modelling in plasma instabilities and disruption analysis 
o Neural state-space model that predicts plasma dynamics during ramp downs 

https://www.researchgate.net/publication/389129708_Learning_Plasma_Dynamics_and_Robust_Ram
pdown_Trajectories_with_Predict-First_Experiments_at_TCV  

 Trajectory planning enabled by ML/AI 
o reinforcement learning (RL) approach to safely ramp down plasma current while 

avoiding disruption-related limits, using a hybrid physics and machine learning model 
https://www.researchgate.net/publication/385645875_Active_Disruption_Avoidance_and_Trajectory_
Design_for_Tokamak_Ramp-
downs_with_Neural_Differential_Equations_and_Reinforcement_Learning  

 Fusion data platform for ML applications 
  

https://www.researchgate.net/publication/389129708_Learning_Plasma_Dynamics_and_Robust_Rampdown_Trajectories_with_Predict-First_Experiments_at_TCV
https://www.researchgate.net/publication/389129708_Learning_Plasma_Dynamics_and_Robust_Rampdown_Trajectories_with_Predict-First_Experiments_at_TCV
https://www.researchgate.net/publication/385645875_Active_Disruption_Avoidance_and_Trajectory_Design_for_Tokamak_Ramp-downs_with_Neural_Differential_Equations_and_Reinforcement_Learning
https://www.researchgate.net/publication/385645875_Active_Disruption_Avoidance_and_Trajectory_Design_for_Tokamak_Ramp-downs_with_Neural_Differential_Equations_and_Reinforcement_Learning
https://www.researchgate.net/publication/385645875_Active_Disruption_Avoidance_and_Trajectory_Design_for_Tokamak_Ramp-downs_with_Neural_Differential_Equations_and_Reinforcement_Learning
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4 Summary of meetings 
Will be completed after the workshop taking place in May 2025. 

 
 

5 Outcome: technology road-mapping 
Will be completed after the workshop taking place in May 2025. 
 
 

6 Conclusion 
Will be completed after the workshop taking place in May 2025. 
 
AI is rapidly becoming an indispensable tool for the demanding fusion and nuclear industries. State-of-
the-art research focuses on leveraging ML and DL for process control, automated inspection, enhanced 
robotic capabilities, and predictive maintenance. While significant progress has been made, addressing 
challenges related to data, explainability, and qualification is crucial for the widespread, safe, and 
reliable deployment of these powerful technologies. 
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Appendix 1: Technology 
Readiness Levels 

 
For this workshop, a TRL scale from 1 to 9 will be used, in line with the IAEA definitions2. 
 
It considers the different criteria for different streams as illustrated in the table below extracted from the 
document in reference. By default, the “System” stream will be used. For more details, please refer to 
the TECDOC 2047 itself. 
 
 

 

 

 
2 IAEA TECDOC 2047: Considerations of TRL for Fusion Technology Components 
Available at https://www-pub.iaea.org/MTCD/Publications/PDF/TE-2047web.pdf 

https://www-pub.iaea.org/MTCD/Publications/PDF/TE-2047web.pdf
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Appendix 2: Technology assessment 
 

1. Added-Value Towards Nuclear Fusion 
Criterion Scale Explanation 

Need for and potential benefit Major / Medium / Minor 
Does this technology address a 
critical and unresolved challenge 

in nuclear fusion? 

Availability of alternative solutions 
Yes/No (EU) 

Yes/No (Outside EU) 
Are there competing solutions in 

Europe or globally? 

Differentiation / Competitive 
Advantage Yes / No 

Does this technology offer a 
unique advantage over existing 

solutions? 
2. Maturity & Feasibility 

Criterion Scale Explanation 

Technology Readiness Level (TRL) 1 to 9 Standard TRL scale (see 
Appendix). 

Expected time to TRL 9 (full maturity) 
<5 years / 5–15 years / >15 

years 
How long until the technology is 

commercially viable? 

Availability of test facilities Yes / No 
Are there existing facilities in 

Europe to validate the 
technology? 

3. Interest from the Innovation Ecosystem 
Criterion Scale Explanation 

Interest from start-ups None / 1–3 interested parties 
/ >3 interested parties 

Level of engagement from early- 
stage companies. 

Interest from industry None / 1–3 interested parties 
/ >3 interested parties 

Level of interest from established 
industry players. 

Interest from research institutions None / 1–3 interested parties 
/ >3 interested parties 

Interest from universities, national 
labs, and research centres. 

4. Other Investment Decision-Making Factors 
Criterion Scale Explanation 

Market potential 
Nuclear fusion-specific / 
Wider market potential 

Is the technology limited to 
fusion, or does it have broader 

applications? 

Competences & skills development Yes / No 
Will this technology enhance 
European expertise in fusion? 

Regulatory impact Yes / No 
Does the technology pose 

significant regulatory challenges? 

5. Risk, Cost, and Implementation Timeline of Next Step on Roadmap 
Criterion Scale Explanation 

Outcome predictability & risks 
Low risk / Medium risk / 

High risk 
How uncertain are the results of 

the next development? 

Estimated development cost 
0–500k EUR / 501k–2M 

EUR/ >2M EUR 
Rough cost estimate for next 

development step. 

Time to first output (once funded) 
<1 year / 1–2 years / 

 >2 years 
Timeframe for delivering tangible 

results. 
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