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Chain of Thought Prompting Improves Accuracy

prompting




Chain of Thought (CoT) Prompting Example

prompt:
a farmer has 10 sheep;|all
but 3 run away, and so he
got 2 more; how many
sheep does he have now?

LLM response:

9 sheep
\




Chain of Thought (CoT) Prompting Example

prompt:
a farmer has 10 sheep; all
but 3 run away, and so he
got 2 more; how many
sheep does he have now?

LLM response:

9 sheep
\

prompt:

a farmer has 10 sheep; all but 3 run away, and so he
got 2 more; how many sheep does he have now?
please think step by step

LLM response:

1. The farmer starts with 10 sheep
2. The phrase "all but 3 run away" means that 3 sheep
did NOT run away

4 “thinking” steps for |

this simple prompt



Chain of Thought Prompting Improves Accuracy




longer and more detail CoT must generate many
prompts — more precise ‘ r >»1 (W nw more tokens as output to
‘and accurate response . “' I explain the steps
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if accuracy of a single
CoT step is 99%

many real-world : accuracy of entire CoT
problems may involve : after 20 steps:
tens of steps (99%)%% = 81.8%

: after 50 steps:

P (99%)°° = 60.5%
challenging scientific : after 100 steps:
problems may require :  (99%)'%° = 36.6%
hundreds of steps
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How to Improve LLM Accuracy? — LLM Scaling Laws

test error

test error

training
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LLM
P(w|s)

inference

(testing, scoring, etc.)
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How to Improve LLM Accuracy? — LLM Scaling Laws

training LLM inference
(pre-training, fitting, etc.) P(w |S) (testing, scoring, etc.)
data volume model size
5% - _ - compute time
L & improve initially, improve initially,
D o then plateau then plateau
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= exponential
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accuracy (~10%)
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How to Improve LLM Accuracy? — LLM Scaling Laws

training LLM inference
(pre-training, fitting, etc.) P(w |S) (testing, scoring, etc.)
data volume model size
n
. 8
o> . N : N
L & improve initially, improve initially,
D o then plateau then plateau
=4
s
log(tokens) log(parameters)
compute time _
exponential
increase in

training resources
(10x) — linear
improvement in
accuracy (~10%)

overfitting

test error
(cross entropy loss)

log(peta-flop-days)
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How to Improve LLM Accuracy? — LLM Scaling Laws

test error
(cross entropy loss)

test error
(cross entropy loss)

training

(pre-training, fitting, etc.)

data volume

improve initially,
then plateau

log(tokens)
compute time

overfitting

log(peta-flop-days)

model size

improve initially,
then plateau

log(parameters)

exponential
increase in
training resources
(10x) — linear
improvement in
accuracy (~10%)
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LLM
P(w|s)

inference
(testing, scoring, etc.)

paralleled

generation

how to generate how to pick the best

+ temperature >0 * human judge

» topp/topk * reward function

* mnp * verifier

* beam search * LLM judge
sec_]uentlal A O—C .
refinement

“thinking” behavior
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sequential paralleled

generation

refinement
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Test-Time Compute (TTC): Performance + Scaling

100

accuracy
B ()] oo
o o o

N
o

co

gptdo

accuracy

mpetition math

(AIME2024)
100

80

percentile

gptdo
prewew

PhD-level science (GPQA diamond)

100
78.3

80

60

40

20

0
gptdo human
prewew expert

©2025 PROS, Inc. All rights reserved. Confidential and Proprietary.

60
20
_

competition coding
(codeforces)

90

prevnew

Learning to reason
with LLMs — OpenAl

train-time compute scaling
vs. test-time compute scaling

100 4
o1 performance
80 on AIME2024 o
> o0 o*® ®
g o .8
3 train- tlme ........... =)
g 40|
20 | * test-time
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log(compute time)

continuing to scale TTC —

continually improving accuracy
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all you need is

compute

paralleled

sequential generation

refinement
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We Just Need More Compute: Future Al Data Center Investment

quantum compute fusion energy
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LLMs are Passive
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Agent vs Ordinary Computer Program

|
.

written by users
executed by users

or other programs
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Agent vs Ordinary Computer Program

|
.

programs that has

autonomy and are
context aware
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Future Al-Augmented Airline Retalil

conventional RM +
WTP forecaster

model-based
‘ reinforcement
learning

right customer

ancillary Al algorithms request-specific

y pricing
ranking :
bundling : double debiased
pricing ‘ neural network-based
. robust estimation

reinforcement
learning
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right channel

offer marketing

impossible to be
everywhere —
funnel them in

hyper-
personalization

continuous pricing
+ WTP model

online learning w/
variational inference
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Future Al-Augmented Airline Retalil

conventional RM +
WTP forecaster

model-based
‘ reinforcement
learning

ancillary Al algorithms

right customer

request-specific
pricing

dyﬂ%@}?ﬁéﬁ"'aw ‘ }% m%ased

Q 9 ﬂorcement I'Oq,g%ﬁﬁglnﬁtion
Ieart}l
enue |
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right channel

offer marketing

ImpOSSIble to be
re —

Y :["9236"

personalization

continuous pricing
+ WTP model

variationa ce

revenue I|ft
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Agent vs Ordinary Computer Program
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Al Automation Roadmap
Al assisted Al led Al automated
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Al Automation Roadmap

we decide how approve suggestions feedback on
we want to work prompt for help user behaviors

Al assisted EEEEEEEEENER > — report results +

suggest actions execute actions exceptions
learn + refine
L ]

e 00 0 00 0000000000000 0000000000000000000000000000000000000000000000000000000000000

\/ analyze work environment learn + refine .
Al suggest how prioritize tasks .
we should work suggest actions :

Al led approve T EEEEEE——> T feedback on

suggestions execute revised tasks user behaviors

- L]

v monitor work environment report results + learn + refine .
Al automate execute tasks whenever exceptions :
most of our work trigger conditions are met alert urgent exceptions .

Ld

Al automated EEEEEEEEEED feedback on
intervene exceptions user behaviors
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Al Automation Roadmap

human: start'the work
and working continuously

i lllllllllll}W report results +
Ak suggest actions execute alti r ‘!5‘ Jm'tte“tly and
help complete the work as.needed

e 00 0 000000000000 000000000000000000000000000000000000000000000

\/ analyze work environment learn + refine
Al suggest how prioritize tasks
we should work suggest actions

—

|

. monitor work environment report results + learn + refine
KI' i?gﬂ't%rﬁ!;'tg work_ execute tasks whenever exceptions

andrworkingocontinuouslyitions are met alert urgent exceptions

Al automated human: working intermittently and
help complete the work as needed
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Some Examples of PROS Agents
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Some Examples of PROS Agents
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