

Technology Development Programme

Magnets
2025

Technology dashboards for review

FUSION
FOR
ENERGY

EUROfusion

Introductory notes

What is this document?

This is an intermediate document in the mapping process aiming at providing the technology dashboards to the participants for review.

The document contains the post processed data following the workshop for each technology covered.

What is expected from participants?

If you have the time and interest, please review the technologies of interest to you. Let us know if you feel the data needs to be modified (missing or incorrect information).

We are particularly interested in your feedback on:

- TRL
- Test facilities
- Entities involved (public and private)
- Technology Development Actions

This is also the final chance to comment on the list of technologies in case you feel modifications are required.

The current list of technologies is provided on page 3 to facilitate your navigation in the file. The description of the TRL scale is provided in Appendix for reference.

How to provide feedback?

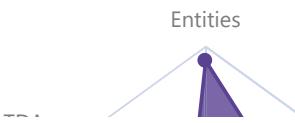
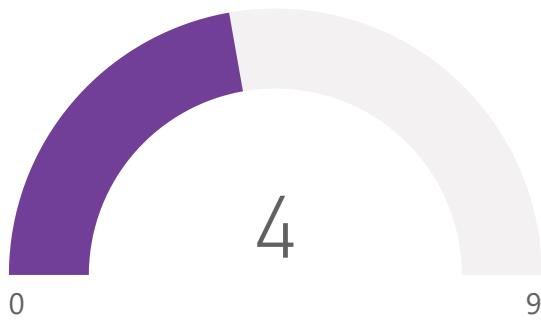
Send an email to marc.simon@f4e.europa.eu.

You may either annotate this file directly or list your comments in the body of the email.

What do I need to know about the dashboards?

The test facilities and actors listed must be based in the EU, UK or Switzerland. For test facilities, we have accepted to list those which are operated by companies based in the EU, UK and Switzerland even if they are outside those territories.

List of technologies

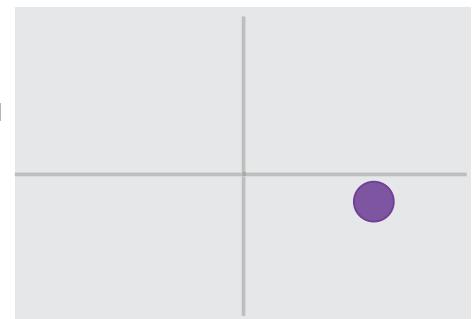


Superconducting materials BSCCO Iron-base superconductors LTS MgB2 REBCO	Cables and conductors CORC cable Dry conductors HTS Rutherford cable HTS Roebel cable Internally cooled conductors Stacked tape cables
Modelling AC losses Digital twins Electro-mechanical analysis Multiphysics Tape mechanical failure modes Thermo-hydraulic analysis	Manufacturing 3D printed formers High precision coil winding 3D printed HTS Modular coil winding Resin VPI
Joining and insulation Demountable joints HTS joints LTS joints Non insulated HTS coils Radiation tolerant insulation Terminations and current leads	Magnet protection Energy extraction systems Quench acceleration Quench detection techniques Quench models
Instrumentation and auxiliaries Cryogenic cooling systems Feedthroughs Fiber optic sensing Hydraulic monitoring Magnetic field mapping Persistent current switches Power supplies Shimming coils Voltage taps extraction	

Magnets

Superconducting material

BSCCO

TRL



IGNORE FOR NOW

Relevance Test Facilities

Essential

Nice to have

Resolved

Unresolved

Other Markets

Medical, Current leads, Energy storage,
Mobility

Alternatives

REBCO
LTS for other applications

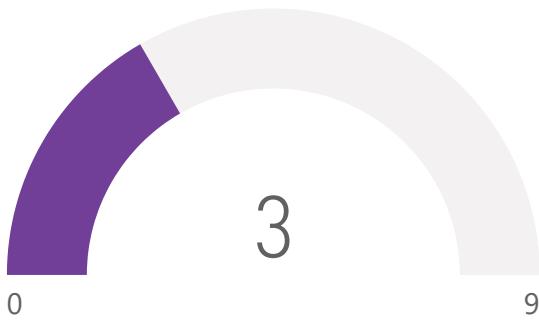
Showstoppers

Commercial availability, Cost

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
Properties: University of Geneva, ENEA, KIT, CNRS Irradiation: TUWien, NCBJ, INRNE, ESS, SCK-CEN, INFN-LNL, PSI, CERN, CIEMAT, EBTC	<p>Superconductor characterization:</p> <ul style="list-style-type: none"> - transport properties (Ic, Tcs) - mechanical behaviour - radiation hardness. 	Private	Public

Technology Development Actions


Name	Chances of success	Cost	Implementation Time	Priority	Funded
Supply chain development	40 to 80%	>1M	>2 years	Low	No

Magnets

Superconducting material

Iron-base superconductors

TRL

IGNORE FOR NOW

Relevance Test Facilities

Essential

Nice to have

Other Markets

Medical, Energy storage, Mobility, Power

Alternatives

REBCO
LTS for some applications

Resolved

Unresolved

Showstoppers

Toxicity, Low critical current

Technology Characteristics

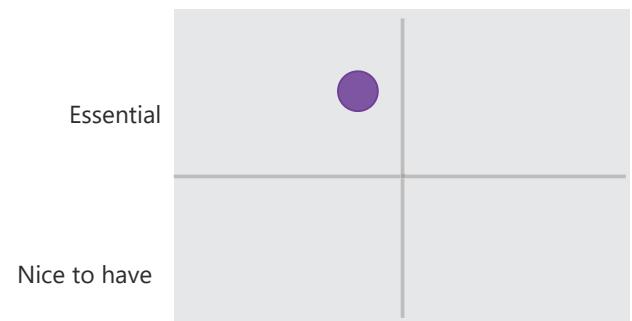
Test Facilities	Test Facility Function	European Entities Involved	
CNR-SPIN, ENEA	Material characterization at lab scale Test synthesis process.	Private	Public CNR-SPIN, ENEA

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Foster R&D on Iron Based Superconductors in Europe	>80%	250k to 1M	>2 years	High	Partially

Magnets

Superconducting material


LTS

TRL

IGNORE FOR NOW

TDA
Difficulty

Nice to have

Resolved

Unresolved

Other Markets

Medical, Energy, Mobility

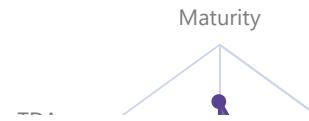
Alternatives

REBCO

Showstoppers

Use of Helium as cooling system,
Medium field applications only

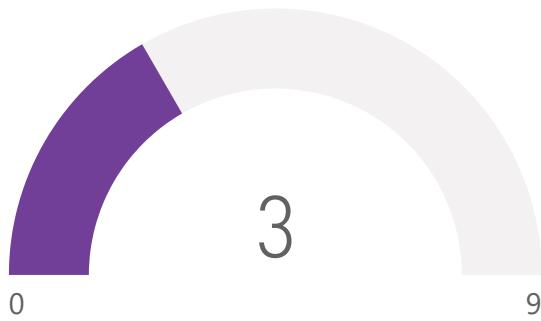
Technology Characteristics


Test Facilities	Test Facility Function	European Entities Involved	
ENEA, EPFL-SPC, CERN, University of Twente, Durham, Oxford, CIEMAT, INFN-LASA, UniGE, CEA	Superconductor characterization: - transport properties (Ic, Tcs) - mechanical behaviour - radiation hardness	Private Bruker	Public University of Geneva

Technology Development Actions

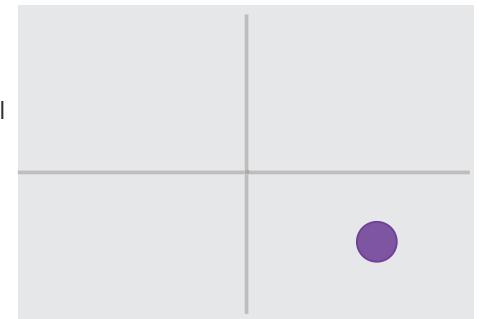
Name	Chances of success	Cost	Implementation Time	Priority	Funded
Develop EU supply chain on LTS to anticipate large projects (FCC, EU-DEMO)	>80%	>1M	>2 years	High	No
Improve Europe sovereignty for raw materials (Nb)	40 to 80%	>1M	6 months to 2 years	Low	No
Share the knowledge and expertise on LTS radiation damage	>80%	<250k	<6 months	Medium	Yes

Magnets


Superconducting material

MgB2

IGNORE FOR NOW


TRL

Relevance Test Facilities

Essential

Nice to have

Resolved

Unresolved

Other Markets

Current leads, busbars, Energy transport, Medical

Alternatives

REBCO
LTS for some applications

Showstoppers

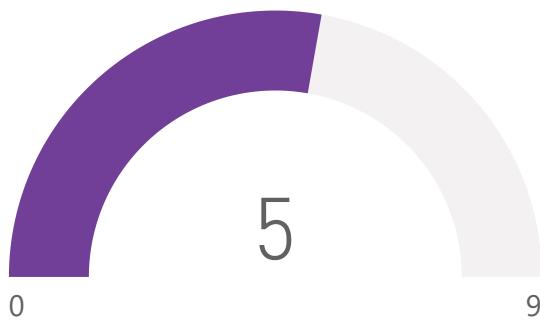
Low field applications only

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
Properties: University of Geneva, ENEA, KIT, CNRS Irradiation: TUWien, NCBJ, INRNE, ESS, SCK-CEN, INFN-LNL, PSI, CERN, CIEMAT, EBTC	Superconductor characterization: - transport properties (Ic, Tcs) - mechanical behaviour - radiation hardness.	Private Columbus (ASG)	Public ENEA

Technology Development Actions

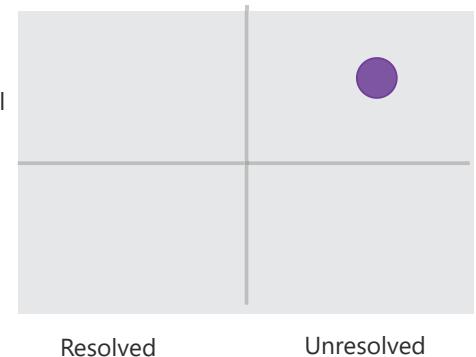
Name	Chances of success	Cost	Implementation Time	Priority	Funded
------	--------------------	------	---------------------	----------	--------


Magnets

Superconducting material

REBCO

TRL



TDA
Difficulty

Test
Facilities

Essential

Nice to have

Other Markets

Transportation, Power, Medical, Energy storage

Alternatives

LTS for lower field applications

Showstoppers

Costs, Mechanics, Radiation resistance unknown, Quench detection

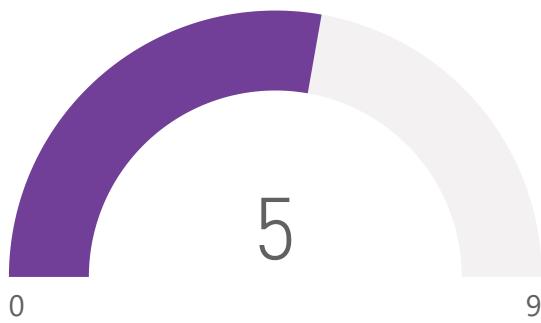
Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
Properties: University of Geneva, ENEA, KIT, CNRS Irradiation: TUWien, NCBJ, INRNE, ESS, SCK-CEN, INFN-LNL, PSI, CERN, CIEMAT, EBTC	Superconductor characterization: - transport properties (Ic, Tcs) - mechanical behaviour - radiation hardness.	Private	Public
		THEVA, Suprema, Subra	ENEA, ICMAB, KIT, SPC, CERN, CEA

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Create REBCO development community	>80%	<250k	<6 months	High	No
Develop standard characterization process and a shared database of REBCO conductor properties	>80%	250k to 1M	>2 years	High	No
Develop supply chain	40 to 80%	>1M	>2 years	High	Partially
Test facilities for tape characterization (transport current, mechanics)	>80%	>1M	>2 years	High	Partially
Develop radiation test facility (incl. transport current measurements)	40 to 80%	>1M	>2 years	Medium	No

Magnets


Conductors and cables

Entities

CORC cable

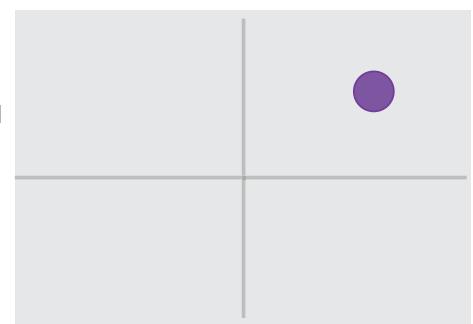
TRL

Other Markets

Alternatives

AC cables, Power, Medical, Transport

IGNORE FOR NOW



Essential

Nice to have

Resolved

Unresolved

Showstoppers

Strain sensitivity, Cost, AC losses, Manufacturing, Low current density, Field quality.

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
SULTAN (SPC), FBI (KIT), CryoMaK (KIT), Twente press (UniTwente), Magnet Test Stand (PSI), Saclay test facility (CEA)	AC and DC characterization Mechanical assessment Thermal and electromagnetic cycling tests Quench behaviour Thermo-Hydraulic characterization Neutron irradiation High voltage tests	Private	Public University of Twente, CEA

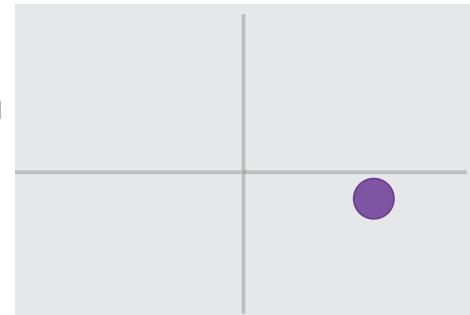
Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Design, build and test model coil	40 to 80%	>1M	>2 years	High	No
Development of a new high field, high current facility for full scale, long length conductors	>80%	>1M	>2 years	High	No
Identification of optimal HTS cable layout depending on the application	>80%	>1M	6 months to 2 years	High	No
Industrial scale up of long length production	>80%	>1M	>2 years	High	No
Development of neutron source to test coils and conductors	<40%	>1M	>2 years	Low	No
Development of a Sultan-like facility with higher performances	>80%	>1M	>2 years	Medium	No

Magnets

Conductors and cables

Maturity

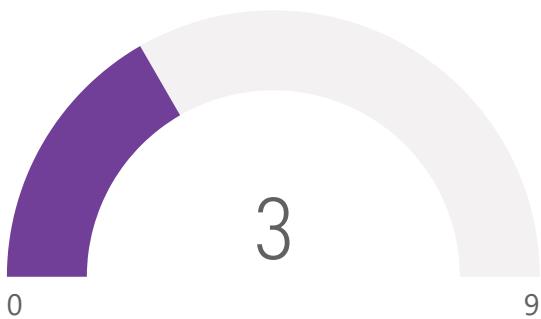


IGNORE FOR NOW

Relevance Test Facilities

Essential

Nice to have


Resolved

Unresolved

Showstoppers

Heat load extraction, Quench protection

TRL

Other Markets

Alternatives

Medical, Motors, Energy storage, Gyrotrons

CICC
Stacked tapes

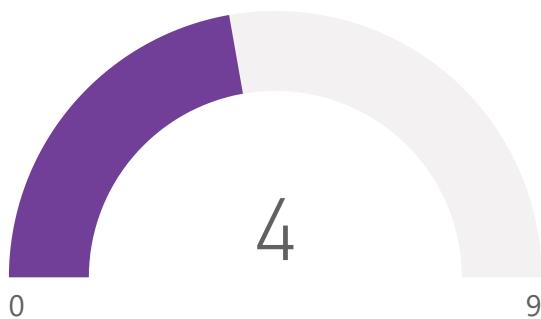
Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved
CryoMaK (KIT)	AC and DC characterization	
Twente press (UniTwente)	Mechanical assessment	
Magnet Test Stand (PSI)	Thermal and electromagnetic cycling tests	
Saclay test facility (CEA)	Quench behaviour	
FRESCA 2 (CERN)	Thermo-Hydraulic characterization	
	Neutron irradiation	Private
	High voltage tests	Public
		ICAS
		NEXANS
		NKT
		SPC
		CERN

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Development of dedicated test facility for Dry conductors	>80%	>1M	>2 years	Low	Partially
Design, build and test model coil	40 to 80%	>1M	>2 years	High	No
Development of a new high field, high current test facility for full scale long length conductors	>80%	>1M	>2 years	High	No
Identification of optimal HTS dry cable layout depending on the application	>80%	>1M	6 months to 2 years	High	Partially
Industrial scale up of long length production	>80%	>1M	>2 years	High	No

Magnets


Conductors and cables

Maturity

HTS Rutherford cables

TRL

IGNORE FOR NOW

Relevance ↘ Test Facilities ↘

Essential

Nice to have

Resolved

Unresolved

Other Markets

Medical, NMR, MRI

Alternatives

CORC
Stacked tapes

Showstoppers

Maximum transverse stress, Heat load extraction, Manufacturing, Mechanical robustness

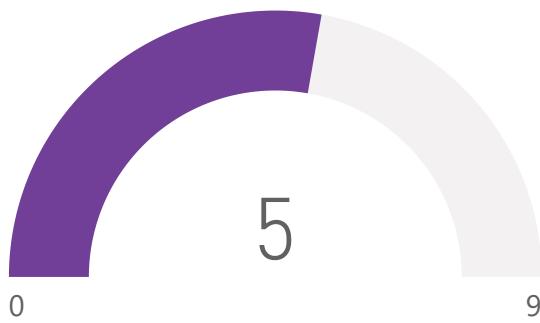
Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
		Private	Public
SULTAN (SPC)	AC and DC characterization		
FBI (KIT)	Mechanical assessment		
CryoMaK (KIT)	Thermal and electromagnetic cycling tests		
Twente press (UniTwente)	Quench behaviour		
Magnet Test Stand (PSI)	Thermo-Hydraulic characterization		
Saclay test facility (CEA)	Neutron irradiation		
FRESCA 2 (CERN)	High voltage tests	ICAS, Nexans, NKT	CERN, SPC, INFN

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Design, build and test model coil	40 to 80%	>1M	>2 years	High	Partially
Development of a "Sultan like" facility with higher performances	>80%	>1M	>2 years	Medium	No
Development of a new high field, high current test facility for full scale long length conductors	>80%	>1M	>2 years	High	No
Identification of optimal HTS cable layout depending on the application	>80%	>1M	6 months to 2 years	High	Partially
Identification or development of neutron source to test coils and conductors	<40%	>1M	>2 years	Low	Partially
Industrial scale up of long length production	>80%	>1M	>2 years	High	No

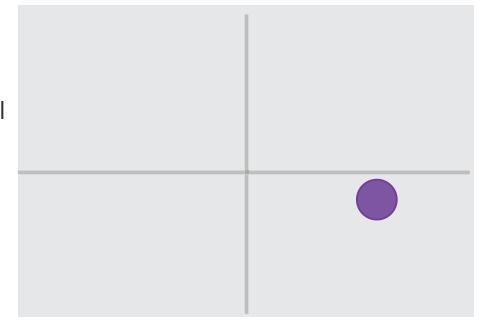
Magnets


Conductors and cables

Entities

HTS Roebel cables

TRL


IGNORE FOR NOW

Relevance

Test Facilities

Essential

Nice to have

Other Markets

Power (motors, generators, convertors)

Alternatives

All other types

Showstoppers

Cost, Manufacturing, Mechanical strength, Material waste

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
		Private	Public
SULTAN (SPC)	AC and DC characterization		
FBI (KIT)	Mechanical assessment		
CryoMaK (KIT)	Thermal and electromagnetic cycling tests		
Twente press (UniTwente)	Quench behaviour		
Magnet Test Stand (PSI)	Thermo-Hydraulic characterization		
Saclay test facility (CEA)	Neutron irradiation		
	High voltage tests		
		CERN	
		KIT	

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded

Internally cooled conductors

TRL

Other Markets

Power, Busbar, current leads

Alternatives

Dry conductor

Entities

IGNORE FOR NOW

Maturity

Relevance

Essential

Nice to have

Resolved

Unresolved

Showstoppers

Low current density,
Field quality

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
		Private	Public
SULTAN (SPC)	AC and DC characterization	ICAS	CERN
FBI (KIT)	Mechanical assessment	Gauss	SPC
CryoMaK (KIT)	Thermal and electromagnetic cycling tests	Proxima Fusion	CEA
Twente press (UniTwente)	Quench behaviour	TE Magnetics	ITER
Magnet Test Stand (PSI)	Thermo-Hydraulic characterization		ENEA
Saclay test facility (CEA)	Neutron irradiation		
	High voltage tests		

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded

Magnets

Conductors and cables

IGNORE FOR NOW

Stacked tape cables

TRL

Other Markets

Current leads and busbars, DC cables,
Medical, Power

Alternatives

All other types

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved
SULTAN (SPC)	AC and DC characterization	Private
FBI (KIT)	Mechanical assessment	Public
CryoMaK (KIT)	Thermal and electromagnetic cycling tests	ICAS, TE magnetics, Proxima Fusion, Gauss
Twente press (UniTwente)	Quench behaviour	CERN, SPC, ENEA, CEA, PSI
Magnet Test Stand (PSI)	Thermo-Hydraulic characterization	
Saclay test facility (CEA)	Neutron irradiation	
	High voltage tests	

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Development of a "Sultan like" facility with higher performances	>80%	>1M	>2 years	Medium	No
Identification or development of neutron source to test coils and conductors	<40%	>1M	>2 years	Low	No
Design, build and test model coil	40 to 80%	>1M	>2 years	High	Partially
Development of a new high field, high current facility for full scale, long length cable performance validation	>80%	>1M	>2 years	High	No
Identification of optimal HTS cable layout depending on the application	>80%	>1M	6 months to 2 years	High	Partially
Industrial scale up of long length production	>80%	>1M	>2 years	High	Partially

Magnets

Modelling

Entities

AC losses

TRL

IGNORE FOR NOW

Relevance Test Facilities

Essential

Nice to have

Other Markets

MRI
Energy management
Mobility
Electrical machines

Alternatives

Increased thermal margin
Empirical models

Resolved

Unresolved

Showstoppers

Computational complexity (many length scales)
Experimental validation

Technology Characteristics

Test Facilities

Josefa (CEA), SULTAN, ITER
MCTF, SM18

Test Facility Function

With dedicated power supply

European Entities Involved

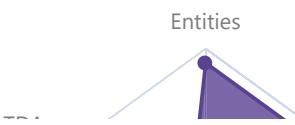
Private

Public

CEA, PSI, ITER, CERN, ENEA

Technology Development Actions

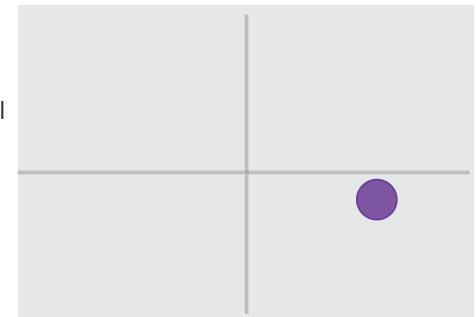
Name	Chances of success	Cost	Implementation Time	Priority	Funded
Development of analytical formulae for real HTS cabling	40 to 80%	250k to 1M	>2 years	High	Partially
Eddy current calculations in large/detailed models	>80%	250k to 1M	>2 years	Medium	


Magnets

Modelling

Digital twins

TRL



IGNORE FOR NOW

Relevance Maturity

Essential

Nice to have

Other Markets

Automation industry, robotics, mobility, civil engineering, power plants, aviation

Alternatives

Only for individual goals of digital twin - verification data, data-driven simulators, but not for all

Resolved

Unresolved

Showstoppers

Lack of test facilities
Real-life application disturbances
High system complexity

Technology Characteristics

Test Facilities

No Test facility oriented to digital twins

Test Facility Function

Definition, Validation, Training and Education, fine-tuning of the digital twin

European Entities Involved

Private

Public

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Identification and development of capabilities to start building digital twins	>80%	250k to 1M	>2 years	Medium	

Magnets

Modelling

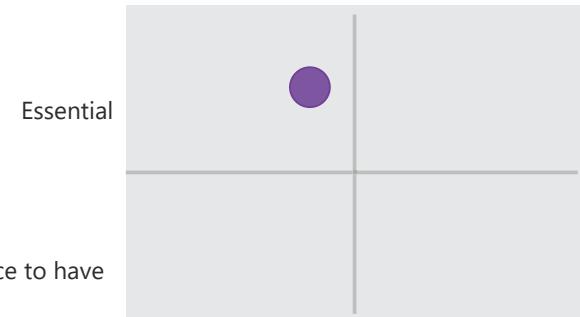
Electro-mechanical analysis

TRL

Other Markets

Abundant examples

Alternatives


Resolved

Unresolved

Showstoppers

Input material properties, Computational resources, Knowledge of failure mechanisms

IGNORE FOR NOW

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

CERN

Material properties
Validation of failure models

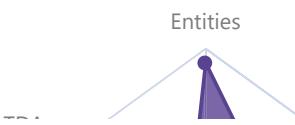
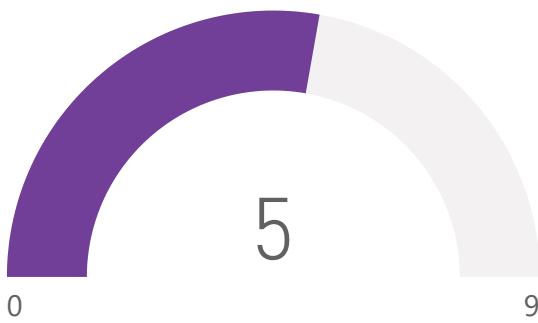
Private

Public

F4E, CERN, ITER

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Understanding of acceptable stress levels in copper former for HTS conductors	>80%	<250k	<6 months	Medium	No



Magnets

Modelling

Multiphysics

TRL

IGNORE FOR NOW

Relevance Test Facilities

Other Markets

Abundant examples

Alternatives

Safety factors accounting for other physical effects, experimental data

Resolved

Unresolved

Showstoppers

Computational resources, need of HPC
Validation of models
Deep knowledge-base needed to develop these models

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
ITER MCTF, ASDEX, WEST, W7-X, SM18 at CERN, DTT Cold Test Facility, SULTAN, TCV, Jordi	Validate models used to design fusion magnets and HTS devices Validation of assumptions, input parameters, interaction between sub-components	Private	Public ITER, CERN, ENEA, CEA, PSI, KIT, SPC

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Validation of numerical models for HTS/cables/magnets	>80%	>1M	>2 years	High	No
Development of techniques to speed up of models	40 to 80%	250k to 1M	>2 years	Medium	


Magnets

Modelling

Tape mechanical failure modes

TRL

Other Markets

HTS powerlines, composite materials, MRI

Alternatives

Resolved

Unresolved

Showstoppers

Connection between the strain (and degradation) and superconductivity state in HTS, Basic principles of HTS materials, Homogeneous characteristics in samples

IGNORE FOR NOW

Relevance Test Facilities

Essential

Nice to have

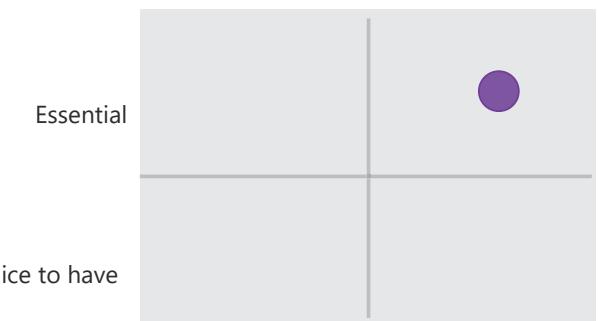
Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
		Private	Public
SULTAN, Twente Press University, KIT, ENEA, CERN	Characterization of failure modes for tapes/cables/conductors Qualification of failure modes for tapes/cables/conductors	RINA, ASG	PSI, Twente University, KIT, ENEA, CERN, University of Bristol, ICMAB, CEA, University of Tuscia

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Experimental Campaigns to Characterize mechanical properties and strength	>80%	>1M	>2 years	High	Partially
Modelling of mechanical failure in tapes	>80%	>1M	>2 years	High	
Understanding of irradiation damage mechanism	>80%	>1M	>2 years	High	

Magnets


Modelling

Thermo-hydraulic analysis

TRL

IGNORE FOR NOW

Other Markets

Cryogenics, Heat exchangers

Alternatives

Experimental data

Showstoppers

Understanding two-phase flow behavior in narrow environments, Complex models or difficult validation (liquid metal). Limited validation data.

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Model validation, measurement of material properties

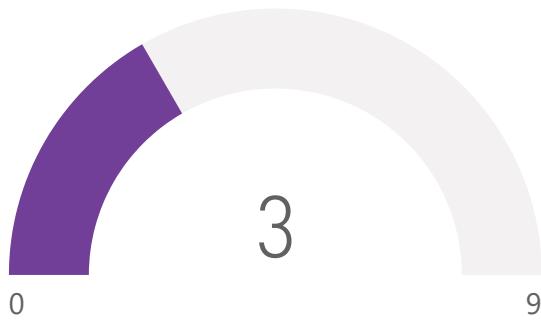
Private

Public

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Different coolants: experimental campaigns to feed models, establish basic correlations	>80%	>1M	>2 years	Medium	
Tailoring existing tools for HTS tapes/cables and magnets	>80%	250k to 1M	6 months to 2 years	High	Yes
Thermal management based on different cooling schemes	>80%	250k to 1M	>2 years	Medium	

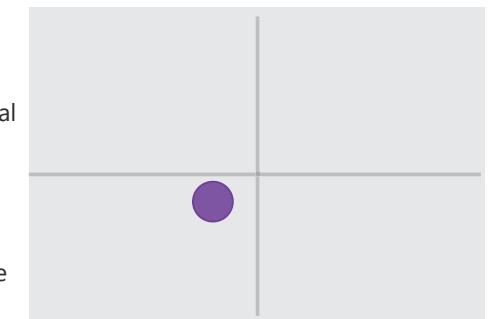
Magnets


Manufacturing

Maturity

3D printed formers

TRL



IGNORE FOR NOW

Essential

Nice to have

Other Markets

Alternatives

Showstoppers

Anywhere where structural parts are used

Machined
Cast

Mechanical and physical properties

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private

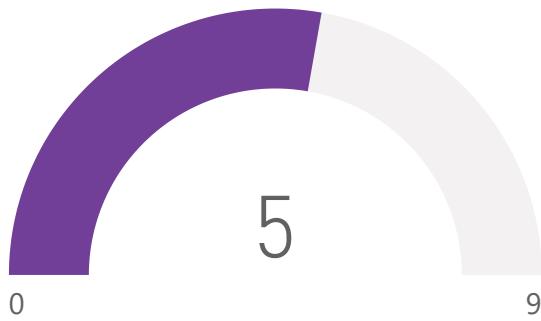
Public

HP, Rosswag, Probeam,
AMCM GmbH, ASG, Bruker,
SeaAlp

CERN, PSI

Technology Development Actions

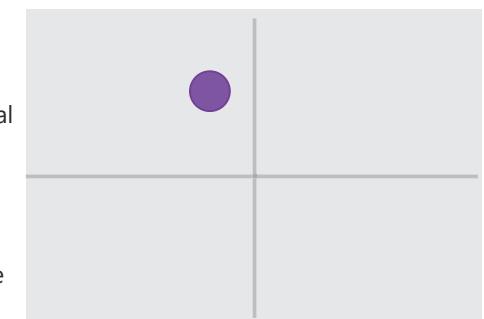
Name	Chances of success	Cost	Implementation Time	Priority	Funded
3D Former Proof of Concept	>80%	>1M	6 months to 2 years	Medium	Partially


Magnets

Manufacturing

High precision coil winding

TRL



IGNORE FOR NOW

Essential

Nice to have

Resolved

Unresolved

Other Markets

Alternatives

Showstoppers

NMR
Medical
Energy storage

3D printing/etching
Modular coils

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

CERN
PSI (SW)

Test winding accuracy

Private

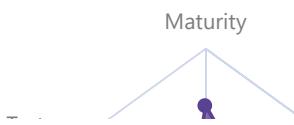
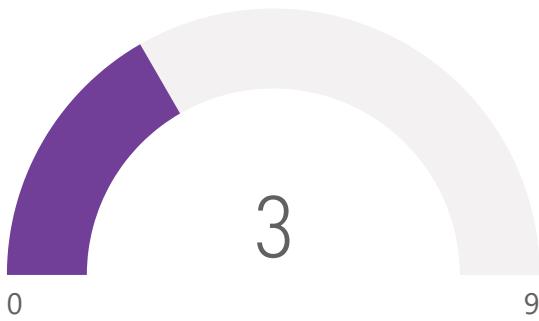
Public

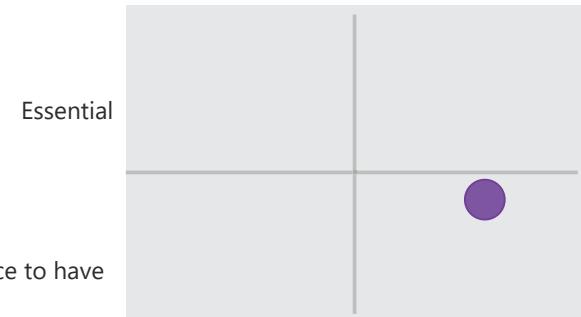
ASG, Ridgway (UK)

CERN, ITER, PSI

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Winding Automation	40 to 80%	>1M	6 months to 2 years	Medium	Partially
Winding of Large Section HTS Conductors	40 to 80%	>1M	6 months to 2 years	Medium	Partially



Magnets


Manufacturing

3D printed HTS

TRL

IGNORE FOR NOW

Other Markets

Alternatives

Resolved
Showstoppers

Medical
Energy storage
Mobility

Vapour and chemical deposition
Round wire production

Scalability
Reliability
Powder availability
Cost

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private

Public

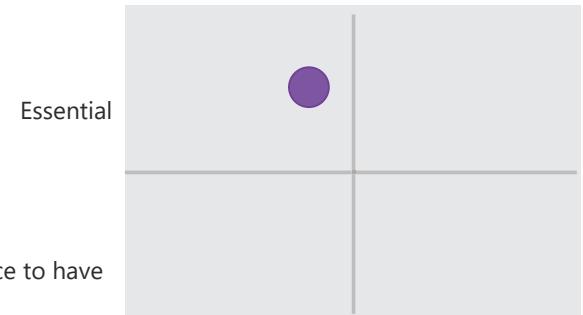
SUBRA, Suprema, Theva,
Renaissance Fusion

ENEA, CERN, KIT, CEA

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Proof of concept that profiled HTS can be successfully manufactured	<40%	>1M	>2 years	Medium	Partially


Magnets


Manufacturing

Modular coil winding

TRL

IGNORE FOR NOW

Other Markets

Alternatives

Showstoppers

Medical
Energy storage
Mobility
Manufacturing

Layer wound coils

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private

ASG, Bruker, Tokamak Energy, Ridgway

Public

ENEA, CEA, PSI, CERN

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Develop Coil Architecture for High Performance HTS Coils	40 to 80%	>1M	>2 years	High	Partially
Inter-module Joints for HTS Coils	40 to 80%	>1M	>2 years	High	Yes

Magnets

Manufacturing

Resin Vacuum Pressure Impregnation

TRL

IGNORE FOR NOW

Maturity Entities

Essential

Nice to have

Resolved

Unresolved

Showstoppers

Other Markets

Alternatives

Automotive
Electrical machines
NMR
Medical
Composite structures

Wet and wind
Pre-impregnated
Non insulated coils
Dry insulation

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private

Public

DEMAK
ASG
Bruker
Elytt Energy

ITER

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Development of Solder Impregnation Process	40 to 80%	>1M	6 months to 2 years	High	Partially

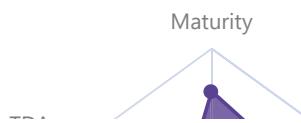
Magnets

Insulation and joining

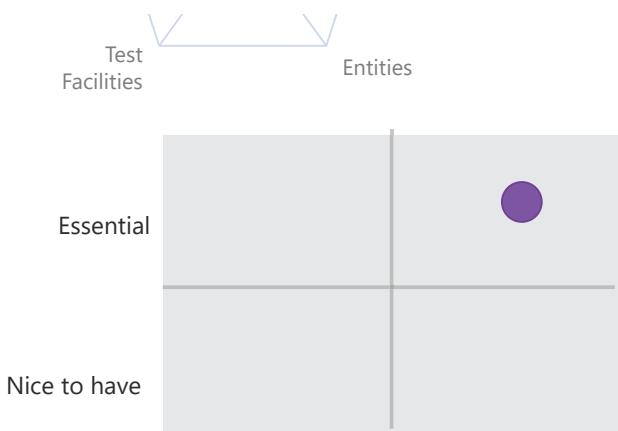
TRL

Other Markets

Alternatives


Complexity and low asset integrity

Resolved


Unresolved

Showstoppers

Repeatability
Ability to use remote handling
Reliable performance (resistance and leak tightness)

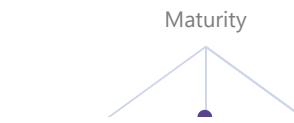
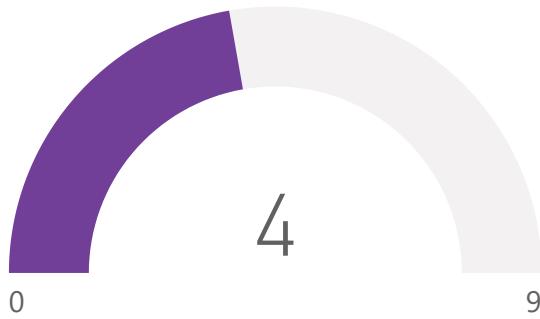
IGNORE FOR NOW

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
Sultan (SPC)	Ability to test batches of demountable joints	Private	Public
		Gauss Fusion	ENEA
		ENI	F4E
		ASG	CEA
			KIT

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Development of specialized tooling for mounting / dismounting Joints					
Define resistance requirements for demountable HTS joints	>80%	<250k	<6 months	High	Partially
Improve reliability in a variety of conditions (mounting/demounting cycles, stresses, radiation, etc.)	40 to 80%	>1M	>2 years	Medium	Partially
Prototyping and Testing of HTS Joints against EM forces	40 to 80%	>1M	6 months to 2 years	Medium	Partially



Magnets

Insulation and joining

HTS joints

TRL

IGNORE FOR NOW

Other Markets

MRI, Defense, Rotary Machines, Mobility, Medical

Alternatives

LTS

Resolved

Showstoppers

Unresolved

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
		Private	Public
SULTAN	Qualification of the junction, exposure to different environmental conditions, radiation exposure, reliability	ASG, Renaissance, Gauss, Tokamak Energy,	KIT, ENEA, CEA, CIEMAT

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Develop pressure-based concepts for HTS joints	<40%	250k to 1M	>2 years	High	Partially
Dedicated Testing Facilities for HTS Joints	>80%	>1M	>2 years	High	No
Standardization of joint design for most promising families of HTS tapes	>80%	>1M	>2 years	Medium	Partially
Develop repair strategy for existing concepts	40 to 80%	250k to 1M	>2 years	Medium	No

Magnets

Insulation and joining

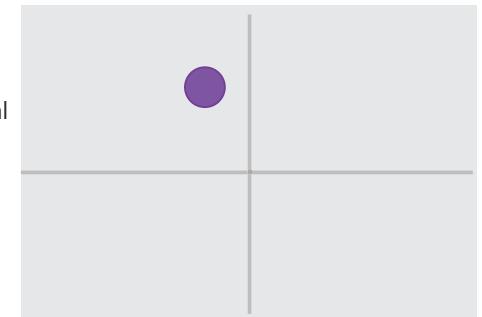
LTS joints

TRL

Other Markets

MRI, Military, HEP, NMR, Accelerators

Alternatives



IGNORE FOR NOW

Essential

Nice to have

Resolved

Unresolved

Showstoppers

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

SULTAN

Additional capability for testing for a scalable market

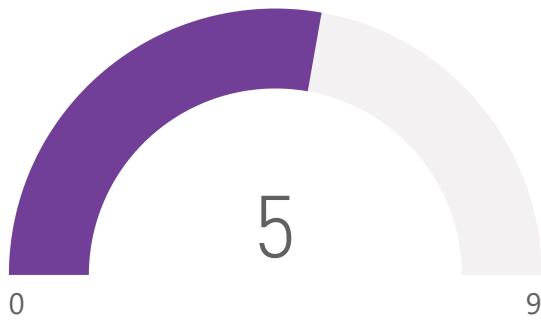
Private

Public

ASG

ENEA, CIEMAT, CEA, CERN, PSI, KIT, VTT

Name	Chances of success	Cost	Implementation Time	Priority	Funded


Magnets

Insulation and joining

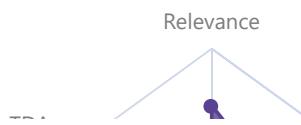
Non insulated HTS coils - resistance control

TRL

Other Markets

Alternatives

Resolved


Unresolved

Showstoppers

Nice to have

Mechanical stability
Detection of fast signals

Insulated coils

IGNORE FOR NOW

Technology Characteristics

Test Facilities

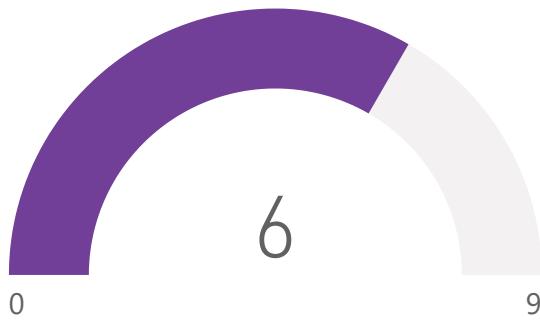
Test Facility Function

European Entities Involved

Private

Public

ASG, Gauss, Renaissance
Fusion, Tokamak Energy


ENEA, UKAEA

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
------	--------------------	------	---------------------	----------	--------

Radiation tolerant insulation systems

TRL

Other Markets

Alternatives

Resolved

Unresolved

Showstoppers

Essential

Nice to have

IGNORE FOR NOW

Maturity

Test Facilities

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
CERN (mechanical, uncoupled), KIT, Vienna University, Experimental Fission reactors	Radiation test	Private	Public

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Dedicated facility for testing coils insulation	>80%	250k to 1M	>2 years	Medium	No
Further exploration and optimization of radiation tolerant insulation	>80%	250k to 1M	6 months to 2 years	Medium	No

Magnets

Insulation and joining

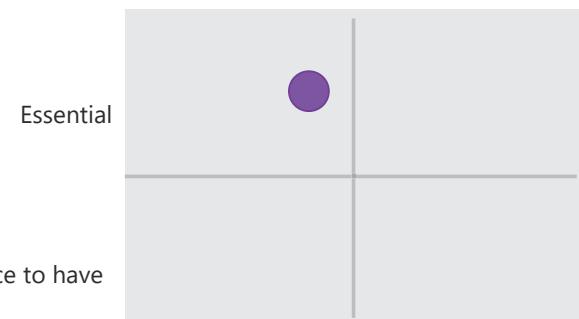
Terminations and current leads

TRL

Other Markets

Power transmission
Data centers

Alternatives


Resolved

Unresolved

Showstoppers

IGNORE FOR NOW

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private

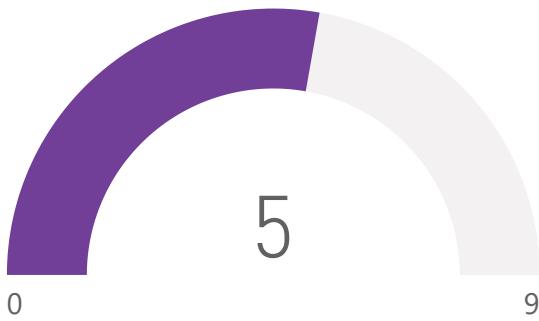
ASG, Bruker

Public

CERN, KIT, CIEMAT, CEA, ENEA

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Assessing degradation and obtaining qualified HTS current leads	>80%	250k to 1M	6 months to 2 years	Low	No


Magnets

Magnet protection

Energy extraction systems

TRL

Other Markets

NMR, MRI, SMES
LTS magnets

Alternatives

internal energy dump

Resolved

Unresolved

Showstoppers

Voltage management

Essential

Nice to have

Entities

Relevance

IGNORE FOR NOW

Technology Characteristics

Test Facilities

ITER, CEA, CERN, DTT, ENEA

Test Facility Function

no need for a specific facility, we could use any other existing facility with minor adaptation

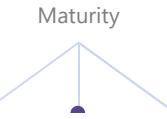
European Entities Involved

Private

Varistors (Metrosil), Danfysik, Ocem, ABB, Secheron

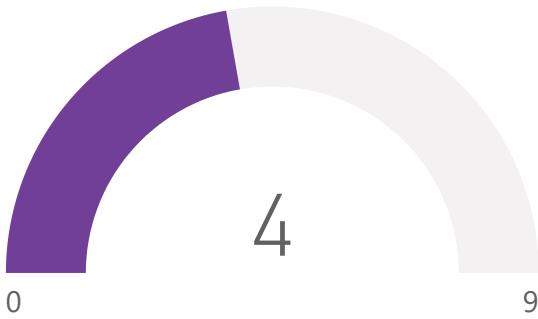
Public

ITER, CEA, CERN, DTT, ENEA


Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Develop high current DC (~60kA) switches	40 to 80%	>1M	>2 years	Medium	Partially

Magnets



Magnet protection

Quench acceleration

TRL

IGNORE FOR NOW

Other Markets

MRI, LTS magnet systems, medicine, motor/generator, aerospace

Alternatives

external energy extraction (when applicable)

Resolved

Unresolved

Showstoppers

Suitable facility, Validation, Difficult to implement.

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private

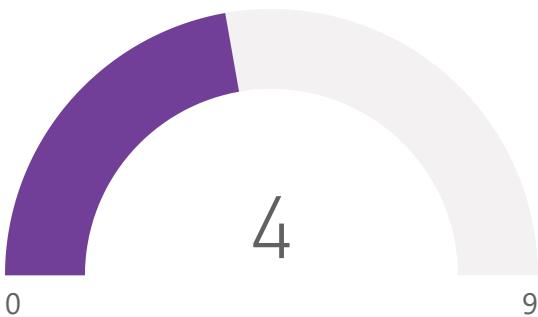
Public

Proxima

INFN, EPFL

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Create benchmark models for HTS to investigate all quench propagation methods (distributed heaters - internal or external, EM, uniformous conductors or conductor with current flow divertor)	40 to 80%	250k to 1M	6 months to 2 years	High	Partially
Develop models for EM quench propagation models	40 to 80%	<250k	6 months to 2 years	Medium	No


Magnets

Magnet protection

Quench detection techniques

TRL

Other Markets

MRI, LTS magnet systems, medicine, motor/generator, aerospace

Alternatives

Passive quench protection

Resolved

Unresolved

Showstoppers

Sensitivity of the instruments
Lack of test facilities.

IGNORE FOR NOW

TDA
Difficulty

Technology Characteristics

Test Facilities

Test Facility Function

CEA, FBI (KIT), DTT, Sultan (EPFL)

Validate quench detection techniques for different magnet configurations

European Entities Involved

Private

Public

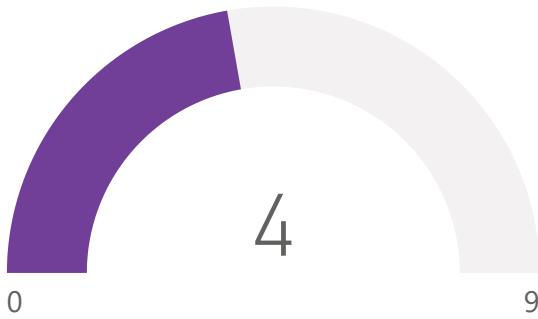
Renaissance, Proxima, Tokamak Energy, ASG superconductors, Bilfinger, SIGMAphi, Oxford instrument, Tesla

CEA, KIT, DTT, EPFL, ITER, CERN, ENEA

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
develop AI-assisted quench detection techniques	>80%	>1M	6 months to 2 years	Low	No
Develop facilities for quench detection validation	>80%	>1M	>2 years	Medium	No
Model coils to identify suitable quench detection techniques	40 to 80%	>1M	>2 years	High	No

Magnets



Magnet protection

Quench models

TRL



IGNORE FOR NOW

Entities Test Facilities

Essential

Nice to have

Other Markets

Alternatives

Showstoppers

MRI, NMR market, accelerator magnets, oncology, military, motor/generator, energy transmission, space application

Complexity, Validation of the models.

Technology Characteristics

Test Facilities	Test Facility Function	European Entities Involved	
The TEAM (Testing Electromagnetic Analysis Methods), we need something similar for quench propagation models TFMC is a good example	(benchmark pre-defined cases)	Private Proxima, ASG, Renaissance, Bruker Tokamak, LBE	Public University of Liège, KIT, Darmstadt

Technology Development Actions


Name	Chances of success	Cost	Implementation Time	Priority	Funded
Connect to the existing HTS quench propagation model community	>80%	<250k	<6 months		
Develop quench design criteria specific for HTS	40 to 80%	250k to 1M	>2 years	Medium	No
Develop/extend database for cryogenic properties	>80%	<250k	6 months to 2 years	Medium	No

Magnets

Instrumentation and auxiliary systems

Cryogenic cooling systems

TRL

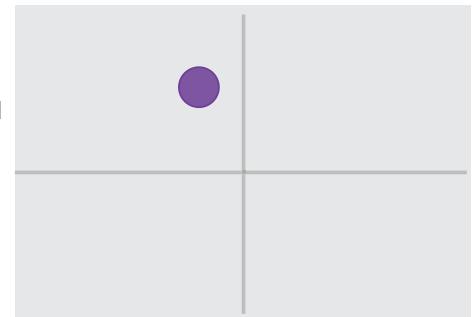
Other Markets

Hydrogen
Mobility
Medical
Electronics
Energy
Quantum computing

Alternatives

Resolved

Unresolved


Showstoppers

Nice to have

Essential

Maturity

Entities

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private

Air Liquide
Linde
Absolut Systems

Public

ESET, F4E, CERN, ITER, ENEA

Technology Development Actions

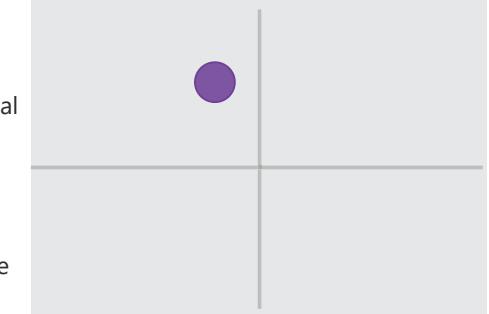
Name	Chances of success	Cost	Implementation Time	Priority	Funded
Development of Turbo Brayton for HTS magnets	40 to 80%	<250k	<6 months	Medium	Partially

Magnets

Instrumentation and auxiliary systems

Feedthroughs

IGNORE FOR NOW


TDA
Difficulty

Relevance

Essential

Nice to have



Resolved

Unresolved

Showstoppers

TRL

Other Markets

Alternatives

Medical
Mobility
Energy

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

High current test facility for
commercializing feedthroughs

Private

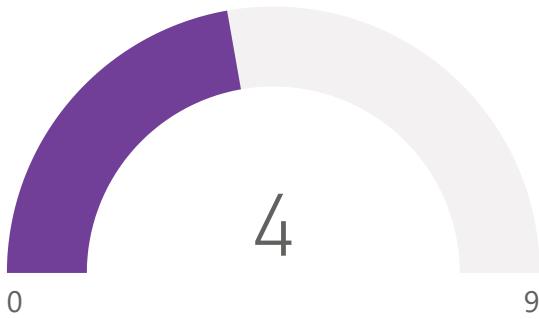
Public

ITER, CERN

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Develop a program for qualification of commercially available connectors for required environment conditions	40 to 80%	250k to 1M	6 months to 2 years	Low	Partially

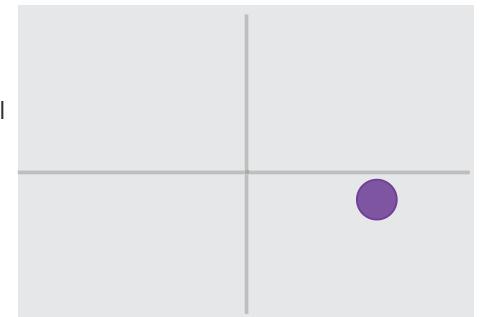
Magnets


Instrumentation and auxiliary systems

Entities

Fiber optic sensing

TRL


IGNORE FOR NOW

TDA
Difficulty

Relevance

Essential

Nice to have

Other Markets

Power plants
Infrastructure
Aerospace

Alternatives

Voltage taps

Resolved

Showstoppers

Unresolved

Fragility

Technology Characteristics

Test Facilities

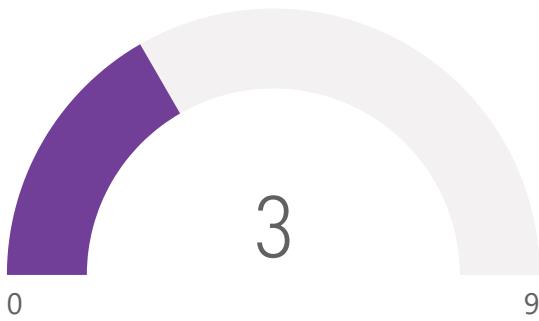
Test Facility Function

European Entities Involved

Private

Public

Technology Development Actions


Name	Chances of success	Cost	Implementation Time	Priority	Funded
Develop a robust way for fiber optics integration into a magnet for a reliable operation	40 to 80%	250k to 1M	6 months to 2 years	Medium	No

Magnets

Instrumentation and auxiliary systems

Hydraulic monitoring

TRL

Other Markets

Pressure vessels

Alternatives

Entities

IGNORE FOR NOW

Test Facilities

Relevance

Essential

Nice to have

Resolved

Unresolved

Showstoppers

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private

Public

Technology Development Actions

Name

Chances of success

Cost

Implementation Time

Priority

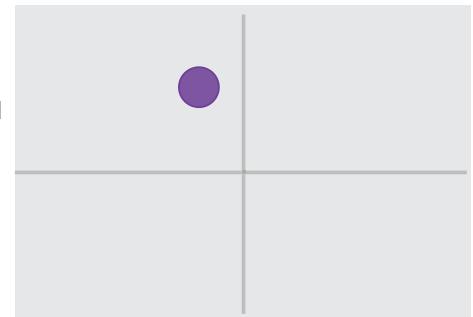
Funded

Magnets

Instrumentation and auxiliary systems

Magnetic field mapping

TRL


IGNORE FOR NOW

TDA
Difficulty

Relevance

Essential

Nice to have

Other Markets

Alternatives

Showstoppers

Mass detection
Medical
Space
Manufacturing

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

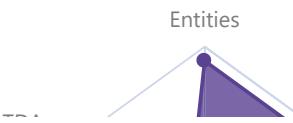
Calibration of Hall probes in high fields

Private

Public

PSI

Technology Development Actions

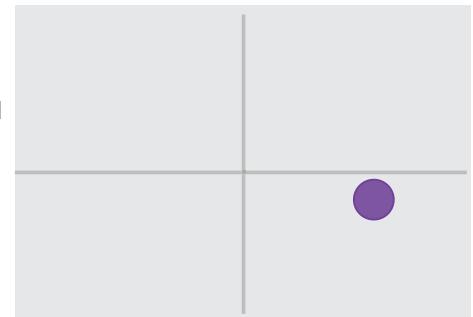

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Develop practical method for measuring magnetic field in large volume coils	40 to 80%	250k to 1M	6 months to 2 years	Low	No
Develop supply chain for high field cryo calibrated Hall probes	40 to 80%	250k to 1M	6 months to 2 years	Low	No

Magnets

Instrumentation and auxiliary systems

Persistent current switches

TRL



IGNORE FOR NOW

Essential

Nice to have

Other Markets

Energy storage
Mobility
Medical
NMR

Alternatives

Protection as per current state-of-the-art by room temperature circuit breakers

Resolved

Unresolved

Showstoppers

High demands to residual resistivity of the switch
Strict demands for heat dissipation

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private

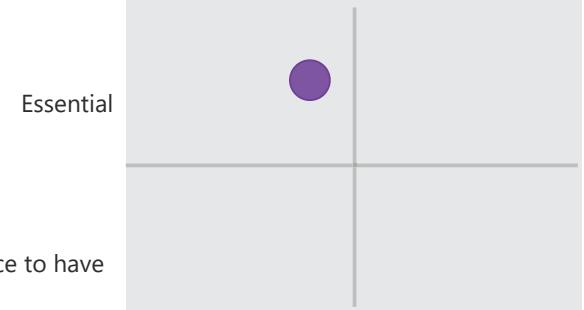
Public

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Develop high current superconducting switches for magnets protection	40 to 80%	>1M	6 months to 2 years	Low	No

Magnets

Instrumentation and auxiliary systems


Power supplies

TRL

IGNORE FOR NOW

TDA
Difficulty

Resolved

Unresolved

Other Markets
▲
Mobility
Medical
Space
Data centres
Metal production
Defense

Alternatives

Showstoppers

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private
▲

Public

Ampegon, ABB

Technology Development Actions

Name ▲	Chances of success ▲	Cost	Implementation Time	Priority	Funded
Formulate requirements which are applicable for future magnets	>80%	<250k	<6 months	Medium	No

Magnets

Instrumentation and auxiliary systems

Shimming coils

TRL

Other Markets

Medical
NMR

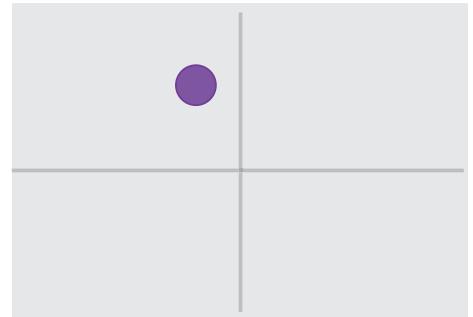
Alternatives

Resolved

Unresolved

Showstoppers

Essential


Nice to have

Maturity

Test Facilities

IGNORE FOR NOW

Technology Characteristics

Test Facility Function

European Entities Involved

Private

Public

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
------	--------------------	------	---------------------	----------	--------

Magnets

Instrumentation and auxiliary systems

Voltage taps extraction

TRL

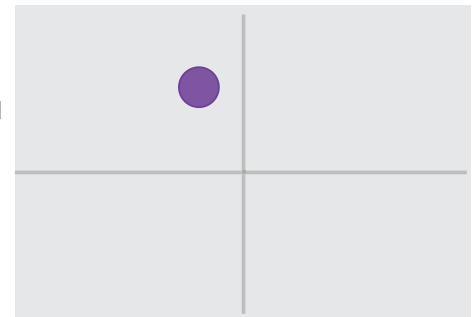
Other Markets

Alternatives

Resolved

Unresolved

Showstoppers


Essential

Nice to have

IGNORE FOR NOW

TDA
Difficulty

Relevance

Technology Characteristics

Test Facilities

Test Facility Function

European Entities Involved

Private

Public

ITER

Technology Development Actions

Name	Chances of success	Cost	Implementation Time	Priority	Funded
Develop reliable insulation methods for magnet penetrations	>80%	250k to 1M	6 months to 2 years	Medium	No
Develop industrial standard for HV extraction	>80%	<250k	6 months to 2 years	Low	No
Developing cold electronics for remote sensing	40 to 80%	250k to 1M	6 months to 2 years	Low	No

Appendix 1: Technology Readiness Levels

For this workshop, a TRL scale from 1 to 9 will be used, in line with the IAEA definitions¹.

It considers the different criteria for different streams as illustrated in the table below extracted from the document in reference. By default, the “System” stream will be used. For more details, please refer to the TECDOC 2047 itself¹.

TRL	Systems	Materials	Software	Manufacturing	Instrumentation
1	Basic principles	Evidence from literature	Mathematical formulation	Process concept proposed	Understand the physics
2	Technology concept	Agreed property targets, cost & timescales	Algorithm implementation documented	Validity of concept described	Concept designed
3	Proof of concept	Materials' capability based on lab scale samples.	Prototype architectural design of important functions is documented	Experimental proof of concept completed	Lab test to prove the concept works.
4	Validation in a laboratory environment	Design curves produced.	ALPHA version with most functionalities implemented with User Manual and Design File available	Process validated in lab	Lab demonstration of highest risk components
5	Partial system validation in a relevant environment	Methods for material processing and component manufacture	BETA version with complete software functionalities, documentation, test reports and application examples available	Basic capability demonstrated using production equipment	Requiring specialist support
6	Prototype demo in a relevant environment	Validated via component and/or sub-element testing.	Product release ready for operational use	Process optimised for capability and rate using production equipment	Applied to realistic location/environment with low level of specialist support.
7	Prototype demo in an operational environment	Evaluated in development rig tests	Early adopter version qualified for a particular purpose	Economic run lengths on production parts	Successful demonstration in test.
8	Test and demonstration	Full operational test	General product ready to be applied in a real application	Significant run lengths	Demonstrated productionised system
9	Successful mission operation	Production ready material	Live product with full documentation and track record available	Demonstrated over an extended period	Service proven

¹ IAEA TECDOC 2047 Considerations of TRL for Fusion Technology Components available from: <https://www-pub.iaea.org/MTCD/Publications/PDF/TE-2047web.pdf>