/Ansys

partof SYTNOPSYS

EN 50716: The Strategic Push Towards Certified
Model-Based Engineering for the Development and
Testing of SIL4 Embedded Software Applications

RAIL !

IFEMA Madrid, Spain - 26-28 November 2025

Bruno Privat - System & Mission Senior MBSE Product Executive - bruno.privat@ansys.com

mailto:Bruno.privat@ansys.com

Outline

Overall Railway Standard’s Evolution

Annex Cl: Lifecycle Model Examples

Annex C2: Modelling

Updates in Part 5: Software Management and organization
Updates in Part 6: Support tools and Languages

How Ansys SCADE fully map new requirements for Safety
Critical Railway Applications

\nsys
partof SYNOPSYS'

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

EN 50155: 2017

Rolling Stock —
electronic equipment

EN 50128: 2001

Signalling, control
and protection
. First versio
* 10 documentsin table A.1
. For SILO no document are
necessary
* Notools qualification

v

EN 50128: 2011

* Replace SILO by BI
* ForBlonly REQ
* No other change

Rallway Standard’s Evolution

EN 50128: 2011-A2

Signalling, control
and protection

46 documents in table A.1

REQ +architecture are necessary

for SILO
Tools qualification

>

Signalling, control and
protection

Align
50128:2011 and EN50657:2017
Bl is used instead of SILO

IEC 62279: 2014

Signalling, control
and protection

Changed Tool Certification

constraints

Some updates in comparison to

NELEC

CE
=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

EN 50716: 2023

Requirements for
Software Development

* definelanguage choice rules

* New chapter C with explanation
on model-based approach

* Cover at least Basic Integrity

EN 50716 supersedes

EN 50128:2011 and EN 50657:2017
and all theiramendments and
corrigenda (if any).

Date of Withdrawal 2026-10-30
latest date by which the national
standards conflicting with this
document have to be withdrawn.

\nsys

partof SYMOPSYS’

Safety Integrity levels and Cost

. Impact on
Standard '0RS IMRARTS estem s REES
5g1Est|/55LoE1C29 BI SIL 1 SIL 2 SIL 3 SIL 4
it BI SSIL1 | SSIL 2 SSIL 3 SSIL 4
CE(I){ 215(3 - SIL 1 SIL 2 SIL 3 SIL 4
AI”Sté’ ?6";6“5‘3 QM ASILA | ASILB | ASILC | ASILD
Agg’ili’lascce DAL E DALD | DALC DAL B DAL A

Specification

Overall Test

Conf Management
Anomalies management

Specification

Overall Test

Conf Management
Anomalies management
Prog rules + metrics
Architecture + Int Test

Basic Integrity

Specification

Overall Test

Conf Management
Anomalies management
Prog rules +metrics

Level

Comparative
Cost

Non-Safety

Related i"' 1
Cost ost
Baseline Skte
+10%

SIL 2

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

Specification

Overall Test

Conf Management
Anomalies management
Prog rules +metrics
Architecture +Int Test
CD +CT +coverage

SIL 2
Cost

SIL1
+36%

oo o [0 |20 e

SIL3 SIL4
Cost Cost
SIL 2 SIL3
+80% +30%

Specification

Overall Test

Conf Management
Anomalies management
Prog rules + metrics
Architecture + Int Test
CD +CT +coverage

\nsys

partof SYMOPSYS’

Typical Railway Applications / Criticality Level

Low Criticality: SIL 1&2

- Passenger Information System

« Train Monitoring System (basic fault
logging)

+ Basic Communication System

« Trackside Monitoring System

« Automatic Train Identification (ATI)
* Non-critical Diagnostic System

« Basic Energy Management System

High Criticality: SIL3 & SIL4

European Train Control System (ETCS)
Automatic Train Control (ATC)

Automatic Train Protection (ATP)

Automatic Train Operation (ATO)

Signaling and Interlocking

Train Control and Management Systems (TCMS)
Communication-Based Train Control (CBTC)
Braking System

Driver Machine Interface (DMI)

\Nsys

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

=N 50128 - EN 50716 Evolution

Provides guidance
for the use of Model
Based Languages

Provides guidance for
Iterative lifecycle

Simplifies Roles and
Responsibilities

Makes emphasis on Examines Artificial
Formal Methods Intelligence

\Nsys

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

=N 50716 Basic Design Principles ensonsz202s introduction

. Top-down Verification at
Modelling design Components each phase
Configuration
Formal e Auditable Management
Methods UaEeslaly Documents and Change
Control
Organization
and Personnel Assessment
Competency
\nsys

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S\/ﬂ[lPS\/S@

- N 50716 Clauses and Annexes

responsibilities
« Lifecycleissues &
documentation

Change Control
Support tools & Languages

Integration
Overall testing / Final valid

Clauses 4
Software Integrity Level
(SILa) gomfgfmzyn CZ © Clauses 8 Clauses 9
Development of SW Deployment
Application Data and Maintenance
Clauses 5 Clauses 6 Annex C Guidance Clauses 7
Software Management Software Assurance on SW Development Software Development
and Organization _ . _
+ Testing 1. Lifecycle model examples « Lifecycle & Documentation
- « Verification 2. Modelling . Software Requirements
e 0O L
in:jgeapne'ﬁzte'ﬂze&of ales - Validation 3. Aland ML « Architecture and Design
+ Assessment + Component Design
- P |
SO COMPEENTE & * Q8A - Implementation & testing

Annex B Annex A Annex D
Key Software Roles Techniques and Bibliography of
and Responsibilities measures Tables Techniques \nsys

f ®
=Y.\ | WS /FEMA Madrid, Spain - 26-28 November 2025 partof SYNOPSYS

EN 50716 Main Technical Changes

wrt EN 501282011 and EN 50657:2017

EUROPEAN STANDARD EN 50716 * Better a“gnEd with EN 50126-1:2017and EN 50126-2:2017,
NEFEELBOFEENAE including definitions

EUROPA'SCHE NORM November 2023

e o rewritten for simpler readability; organizational options
unchanged

English Version

Railway Applications - Requirements for software development

Applications ferroviaires - Exigences pour le développement ftware-Nom fur

o updated forimproved lifecycle phase alignment

This European Standard was approved by CENELEC on 2023-10-30. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibli lographical references concerming such national standards may be obtained on application to the CEN-CENELEC

Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, Ger language made by translatio
under the respor sbny olaCENELEC member ink s own tan nguage and oufed m e CEN- CENELEC Management ot Cenlre has the
same status as the official versions

CENELEC members are the national elecllolech cal committees of Austria, Belgium, Bulgaria, Croatia, Cyp us, the Czech Republic,

. . .
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the ([
Netheriands, Norway, Poland, Portugal, Rep lbic of North Macadonia, Romania, Serbia, Slovakia, Siovenia Spain, Sweden, Switzerland

Tarkiye and the United Kingdom.

added with guidance on software modelling More guidance

CENELEC

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europiiisches Komitee fiir Elcktrotechnische Normung

for software components of different SILProgramming

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

©2023 CENELEC Al rights of exploitation in any form and by any means reserved woridwide for CENELEC Members.

Ref. No. EN 50716:2023 E

language requirements generalized \nsys
=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

Software Integrity Levels (Clauses 4)

“"Classification which determines the techniques and measures that have to be applied to software”

From EN 50126-2017 Table 2

“[4.3] The required software integrity level shall
Safety Integrity | Train Failure and Fault Report [h1] be decided and assessed at system level, on the
Level basis of the system safety integrity level and
(SIL) the level of risk associated with the use of the
software in the system.”

“[4.4] At least the Basic Integrity requirements
of thisdocument shall be fulfilled for the

2 >107"to < 107° software part of functions that have a safety
1 >10"%to < 1075 impact below SIL1”
Basic Integrity > 10> Software that was developed in accordance

with the previous software standards can still

Mean Time Between Failures (MTBF) =1/PFH be re- used for new projects.”

for SIL4 isbetween 114,155years and 11,415 years.

The higher the risk resulting from software failure,
the higher the software integrity level will be. \nsys
=7\ | S /FEMA Madrid, Spain - 26-28 November 2025 part of SynUPSyS@

/Ansys

partof SYNOPSYS

Annex C.1

Lifecycle Model Examples

RAIL V' IFEMA Madrid, Spain - 26-28 November 2025

C.1.2 Linear lifecycle models

-
System Development Phase (external)
System Requirements Specification
System Architecture Description
System Safety Plan Plan

\

Software Requirements Phase (7.2)
Software Requirements Specification
Overall Software Test Specification
Software Requirements Verification Report

Software Arch. & Design Phase (7.3)

|Software Architecture Specification
|Software Design Specificatuon
Softwure Interface Specification
|Softwure Integrition Test Specificution
Software/Hardware Integraton Test
|Specificaton

|Software Architecture and Design

‘\"cnﬁcmmn Report

Software Component Design Phase (7.4)

Soltware Component Design Specification
Software Component Test Specification

Sofltware Component Design Verification
Report

»

Software Maintenance Phase (9.2)

Software Maintenance Records
Soltware Change Records

/

Software Validation Phase (7.7)

——> Overall Software Test Report

Software Validation Report

/

Sofltware Integration Phase (7.6)

——> Software Intcgrition Test Report

Software/Hardware Integrtion Test Repornt
Softwure [megration Verification Report

Software Component Testing Phase (7.5)

L S(Software Component Test Report
(s Li

\

‘SO((WHJ’L‘ Source Code Verification Report

Software Component Implementation Phase (7.5)

Software Source Code & Supporting Documentation

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

Guidance on Lifecycle Models

Linear lifecycle models have implicit feedback loops, any

change can force a return to earlier phases.

Examples:

An architecturereview uncovers a missing
requirement.

Component testing exposes implementation/design
defects or missing test cases.

Inthe worst case, a system-requirements change during

overall testing triggers re-doing all phases starting from
requirements.

Theserepetitionsareunplanned and require
updating the project plan.

The standard’s normative sectionsassume alinear lifecycle
tomodel phase dependencies, reflecting the structure of
activities and results at completion, regardless of the actual
process used to produce validated software and

documentation. \
nsys
partor SYNOPSYS

Gulidance on Lifecycle Models

C.1.3 Iterative lifecycle models SAS s g
Iteration 1
- o _]| e & Design 1 (7.3) _
Part2 . N = @ ::::Ic;: :ur Part 1
Iteration 2 W/ >
' —_— . Part 3 -+ J| i ¢ & Design 2 (7.3) ‘ —
l - '/\' I P m@@ v::jol';zur arts 1an
& “'[Sollvure Requirements (7.2)] Iteration 3 it r———
I < { & Design 3 (7.3) ‘
4 /-;\ M . ;::j::forl’ann 2and 3
[A801(7.3) | CO1(7.6) Jomil CIAT 1(7.5) |t INT 1 (7.6) |y \\J > (eomgiste st}
\/ \\Y W Iteration 1

* Use the same phases/activities aslinear models but
applythem repeatedly to smaller scope packages

v
[a802(2.3) |=={cD2(7.4) |JelciaT2(7.5) |=={mT2(76) |

Iteration 2

. 4 . .
[As037.3) Jee{co3(74) i CaTa(75) Jot{NT3(7.6) | until the goal is met.
U \' W ' Iteration 3 _ _ _ _
I * Final deliverablesarethe same asinalinear
[Overat SW Tosting/ Finai Valdation77) |5 ——— lifecycle and must meet the same design,

Assossment (6.4)

verification, and validation requirements.

[Software Deployment and Maintenance (9)]t 3

* When reusing outputs from earlier iterations,
verify they’re still valid and haven’t been
invalidated by intervening changes.

* Unlike linear approaches, repetitionisintentional \nsys

and planned upfront, not just areaction to
2T\ INEE. /FEMA Madrid, Spain - 5%—28 November 23%5 ! +of .
unplanned events. partof SYNOPSYS

/Ansys

partof SYMOPSYS’

Annex C.2

Modelling

RAIL V' IFEMA Madrid, Spain - 26-28 November 2025

Modelling

“Nowadays, software is ubiquitous in railway. It provides more services to the operator by
implementing more functions and by increasing the complexity of existing functions. ” EN 50716 [C.2.1]

 “At the same time, the time schedule
is more challenging while software
needs to comply with the same or
more demanding requirements”

Numerical
methods

Verification
& Validation

OOO

Collaborative
projects

* “This Annex explains possible usage
benefits of modelling approaches
during development at software level
as well as specific aspects to

consider.”

Platform

considerations Performance

Need better
methods Safety
and tools!

* “Italso provides a guidance for the
application of modelling in software
development in compliance to EN
50716.”

SW Coding
standards

Programming
Language
readability

standards

Milestones,
deadlines...

\Nsys

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

Modelling Definition

“A Model is a logical representation aimed at developing, understanding, communicating, or
explaining aspects of a system, entity, or process.”

* “Modelling notations can be Graphical or Textual, Formal or
Semiformal” UnknownSpeed —————— SpeedsSiate

" SipSideMector
* “Modelling notations with well-defined syntax and semantics e

allow to decrease workload, complexity, project risks and costs OfStte) SysiemSite
- Easier evaluation of alternative scenario . y
- Early discovery of defects
| Sysemon " notl_SysemOn "

- Automatic code and document generation
- Enhanced verification means [on]
- Reduced test effort by use of model consistency . ok -
- Built-in simulation capabilities | spececr > CheckSpecdvects

. . .- : SipSide\ector
- Integration with support tools (e.g. traceability) g Tangpesd *
- Reuse on different hardware platforms” N), oyt

. A

- increased consistency leading to improved change i\ T
management and maintainability \n SYS
VMBS /FEMA Madrid, Spain - 26-28 November 2025 partof SYTIOPSYS

C.2.6.1

“Models can better

between them mainly because
one given model may contain the deliverables of

several phases of the development,

also

RefSpeed >—

—Lifecycle Issues & Documentation

A document is information and the medium on which it is contained. Information is not limited to natural language and
medium is not limited to paper. Thus, models stored in databases are actual documents. Table A1 can then be applied as is."

| x|

THRESHOL

together and

. Models can
the need for certain activities.” C.2.3

1
C

NbCycles >—

“All tools used when modelling need to comply with the

requirements of 6.7." Tool qualification

DetectSlipSlide

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

——> SlipSlide

“Some models are not easily viewed, edited and
printed without dedicated (closed) tools.

Even if document generation is possible, a lot of the
information contained in the models, the metadata
associated to the elements they contain, may be lost
in the process.” C.2.3

START/STOP
CONTROL
POWER

LS1 Ls2
CR1 LOW LEVEL HIGH LEVEL CR2

SOLENOID
VALVE

\Nsys
partof SYNOPSYS'

Modelling —Support Tools & Languages

All tools used when modelling need to comply
with the requirements of

It is easier to design,
verify, maintain, evolve

with Qualified Tools

iC N

gl)

-

i .
~

Plans SW Design Coding Testing SW/HW Doc.
Integration

o N W e

= = Y -

{

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

The objective is to provide evidence that potential failures
of tools do not adversely affect the integrated toolset
output in a safetyrelated manner [6.7.1]

°* Tool class Tl tool which is not used to generate

outputs which can directly or indirectly
contribute to the executable code (including data),
e.g. model editors v

* Tool class T2 tool which is used to support the test
or verification of the design or executable code, where
errors in the tool can fail to reveal defects but cannot
directly create errors in the executable software

v'Report tools
v'Traceability tools

v'Verification tools
v'Diagnostic tools

* Tool class T3 tool which is used to generate outputs
which can directly or indirectly contribute to the
executable code of the system

v"Code Generators

\Nsys

patof SYNOPSYS

—Software Requirements

Table A.2 Software Requirements Specification, EN 50128:2011

| TECHNIQUE/MEASURE | Ref | siLo | siL1|sL2|sL3|sL4|
1. Fomal Methods (based on a mathematical D.28 - R R HR HR
approach)
2. Modelling Table R R R HR HR
A7
3. Structured methodology D.52 R R R HR HR
4. Decision Tables D.13 R R R HR HR

Requirements:

1) The Software Requirements Specification shall include a description of the problem in natural language
and any necessary formal 7' semiformal notation.

2) The table reflects additonal requirements for defining the specification clearly and precisely. One or more
of these techniques shall be selected to satisfy the Software Safety Integrity Level being used.

Table A.2 Software Requirements Specification, EN 50716:2023

Table A.17 — Modelling

TECHNIQUE/MEASURE Ref Basic SIL1 | SIL2 | SIL3 | SIL4
Integrity
1. Modelling | Table A7 | R R | R | HR | HR
2. Structured methodology D.52 R R R HR HR
3. Decision Tables D.13 R R R HR HR

Requirements:

1) The Software Requirements Specification shall include a description of the problem in natural
language and any necessary formal or semiformal notation.

2) The table reflects additional requirements for defining the specification clearly and precisely. One
or more of these techniques shall be selected to satisfy the Software Integrity Level being used.

TECHNIQUE/MEASURE Ref Basic SIL1|SIL2|SIL3]|SIL4
Integrity

1. Data Modelling D.65 R HR HR HR HR
2. Data Flow Diagrams D.11 - HR HR HR HR
3. Control Flow Diagrams D.66 R HR HR HR HR
4. Finite State Machines or State Transition D.27 - HR HR HR HR
Diagrams
5. Petri Nets D.55 - HR HR HR HR
6. Decision/Truth Tables D.13 R HR HR HR HR
7. Formal Methods | D.28 - HR | HR | HR | HR |
8. Performance Modelling D.39 - HR HR HR HR
9. Prototyping/Animation D.43 R R R R
10. Structure Diagrams D.51 - HR HR HR HR
11. Sequence Diagrams D.67 R HR HR HR HR
12. Cause Consequence Diagrams D.6 R R R R R
13. Event Tree Diagrams D.22 - R R R R
Requirements:
1) For SIL 1-4, modelling guidance shall be defined and used.
2) For SIL 1-4, at least one of the HR techniques shall be chosen.

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

\Nsys

patof SYNOPSYS

—Architecture and

"Most of the modelling techniques of Table A.17 can
be used for the architecture and design of the
software, particularly time Petri nets, control flow
diagrams, and finite state machines.”

"Techniques of Table A.4 related to suitable

programming languages are either not applicable or
need to be adapted (see Table C.1).”

Table A.4 — Software design and implementation (7.3, 7.4 and 7.5)

TECHNIQUE/MEASURE Ref Basic SIL1 | SIL2 | SIL3 | SIL4
Integrity

1. Modelling Table A.17 R HR HR HR HR
2. Structured methodology D.52 R HR HR HR HR
3. Modular Approach D.38 HR M M M M
4. Components Table A.20 HR HR HR HR HR
5. Design and Coding Standards Table A.12 HR HR HR M M
6. Analysable Programs D.2 HR HR HR HR HR
7. Structured Programming D.53 R HR HR HR HR
8. Suitable Programming Languages Table A.15 R HR HR HR HR
Requirements:
1) An approved combination of techniques for software integrity levels 3 and 4 is 1, 3, 4, 5.
erLmA;\ cftrpgroved combination of techniques for software integrity levels 1 and 2 is 2, 3, 4, 5 and one

TNINE. /FEMA Madrid, &

Table C.1 — Architecture and design typical adaptation for modelling

TECHNIQUES / MEASURES OF TABLE A4

TYPICAL ADAPTATION FOR MODELLING

1. Modelling

applicable as is

2. Structured methodology

applicable as is

3. Modular approach

A module is an element of organization of the
source code to improve its understanding and
separate the concerns. If the source code is not
automatically generated, if it's modified after
generation or if it's the input of manual analysis, this
technique remains applicable.

4. Component

applicable as is

5. Design and coding standards

The design standard shall cover the modelling
notation (i.e. it shall encourage good modelling
practices and avoid poorly-defined features of the
modelling language) and the structure, organization
and hierarchy of the model.

The coding standard is fully applicable when the
source code is not automatically generated, when
it's modified after generation or when it's input of
manual analysis. Otherwise, the coding standard
may be present as part of a validated translator,
particularly the rules contributing to the avoidance
of poorly-defined features of the programming
language.

6. Analysable programs

If analysis are performed on the source code, the
technique is applicable as-is. If all or parts of the
analysis are made on the models, the models also
need to be analysable.

7. Structured programming

This technique is used to limit the structural
complexity of the source code. An equivalent
technique need then to be similarly applied on
models. The technique is also applicable to the
source code if specific analysis are done on it.

8. Suitable Programming language

Criteria for programming languages are also
applicable to modelling notations. If the source code
is automatically generated but neither modified after
generation nor the input of subsequent analysis and
depending on the guarantees provided by the
generator, some of the criteria can be useless.

R)] |

Design

SYS
IOPSYS'

—Component Design & Testing

“Most of the modelling techniques of Table A17can also be used for software component design. As for
architecture and design, depending on the context, techniques of Table A.4 related to suitable
programming languages need to be adapted.” (see Table C.1).

Techniques for software component analysis and testing of Table A.5 are directly applicable
as-is to modelling except test coverage for code. Indeed, techniques of Table A.21 are very
specific to imperative programming languages. Alternative coverage criteria need then to
be defined depending on the modelling notation used with the objective to cover all parts
of the model (e.g. components, interfaces, data flow, control flow) with the same level as
with programming languages

Table A.21 — Test coverage for code

Table A.5 — Software component analysis and testing (6.2 and 7.4)

Test coverage criterion Ref Basic SIL1 |SIL2 | SIL3 | SIL4
TECHNIQUE/MEASURE Ref Basic SIL1|SIL2 |SIL3| SIL4 Integrity

Integrity 1. Statement D.50 R HR | HR | HR | HR
1. Formal Proof D.29 - R R HR HR > Branch D 50 R R HR HR
2. Static Analysis Table A.19 - HR HR HR HR 3. Compound Condition D 50 R R HR HR
3. Dynamic Analysis and Testing Table A.13 HR HR HR M M 4 Data flow D.50 R R HR HR
4. Metrics D.37 - R R R R 5 Path D 50 R R HR HR
5. Test Coverage for code Table A.21 - HR HR HR HR
6. Performance Testing Table A.18 - HR HR HR HR \
7. Interface Testing D.34 HR HR HR HR HR n sys

s \ITEIE- 'FEVIA Madrid, Spain - 26-28 November 2025 partof Syn["]sys@

—Component Implementation &
Testing

Table C.2 — Component implementation and testing typical adaptation for modelling

“When using models at software component level, the subclauses

applicable to the source code can be contextualized in similar JYBCLAYSES VIPICAL-ADAPTATION FORMODELLING
. 7.5.4.2 The size and complexity of the 7.5.4.2 The size and complexity of the developed
SUbCIGUSES Gpp/ICGb/E to mOdEIS (See)-" developed source code shall be balanced. model shall be balanced.

7.5.4.3 The Software Source Code shall be
readable, understandable and testable. understandable and testable.

" . . . 7.5.4.3 The model shall be readable,
Ifthe source code isautomatically generated and neither

7.5.4.4 The Software Source Code shall be 7.5.4.4 The model shall be placed under
placed under configuration control before the configuration control before the commencement of
commencement of documented testing. documented testing.

modified after generation nor input of analysis,

longer necessary tojapply the subclauses|listed in the Table
. . 7.5.4.10 After the Software Source Code and | 7.5.4.10 After the model and the Software
®. a5 6.7wou Id a pply forthe automatic code generation the Software Component Test Report have Component Test Report have been established,

t | ” been established, verification shall address verification shall address

ool. a) the adequacy of the Software Source Code | a) the adequacy of the model as an implementation
as an implementation of the Software of the Software Component Design Specification,
Component Design Specification,

As for architecture and design, techniques of Table A.12
related to coding standards need to be transposed to the
modelling notations used (see Table C.3)

b) the correct use of the chosen techniques
and measures from Table A.4 as a set
satisfying 4.8 and 4.9,

c) determining the correct application of the

b) the correct use of the chosen techniques and
measures from Table A.4 as a set satisfying 4.8
and 4.9,

c) determining the correct application of the
modelling standards,

coding standards,

d) that the Software Source Code meets the
general requirements for readability and

d) that the model meets the general requirements
for readability and traceability in 5.3.2.7 to 5.3.2.10

Table C.3 — Coding standards techniques / measures typical adaptation for modelling and in 6.5.4.14 t0 6.5.4.17, as well as the specific

TECHNIQUES / MEASURES OF TABLE A.12

TYPICAL ADAPTATION FOR MODELLING

1. Coding Standard

Modelling Standard

2. Coding Style Guide

Modelling Style Guide

3. Limited size and complexity of Functions,
Subroutines and Methods

Limited size and complexity of model parts

traceability in 5.3.2.7 t0 5.3.2.10 and in
6.5.4.14 t0 6.5.4.17, as well as the specific
requirements in 7.5.4.1 t0 7.5.4 4,

e) the adequacy of the Software Component
Test Report as a record of the tests carried out
in accordance with the Software Component
Test Specification

requirements in 7.5.4.1 t0 7.5.4.4,

e) the adequacy of the Software Component Test
Report as a record of the tests carried out in
accordance with the Software Component Test
Specification

4. Entry/Exit Point strategy for Functions,
Subroutines and Methods

Not applicable since models generally don’t have
the concept of unconditional jump

5. Defined control of Global Variables

Defined control of input and output data in model
parts (e.g. signals, information flows)

2V-\IWE. /FEMA Madrid, Spain - 26-28 November 2025

\Nsys

patof SYNOPSYS'

“Techniques for software integration analysis and

testing of
modelling.”

—|ntegration

Table A.6 — Software integration analysis and testing (7.3 and 7.6)

are a” directly as-is app/icab/e to TECHNIQUE/MEASURE Ref In?:gs:iiy SIL1|SIL2|SIL3]| SIL4
1. Dynamic Analysis and Testing Table A.13 HR HR HR HR HR
2. Performance Testing Table A.18 - R R HR HR

Table A.13 — Dynamic analysis and testing
TECHNIQUE/MEASURE Ref Basic SIL1 | SIL2 | SIL3 | SIL4
Integrity

1. Test Case Execution from Error Guessing D.20 R R R R R
2. Test Case Execution from Error Seeding D.21 - R R R
3. Structure-Based Testing D.50 - R R HR HR
4. Test Case Execution from Cause D.6 - - - R R
Consequence Diagrams
5. Prototyping / Animation D.43 - - - R
6. Test Case Execution from Boundary Value D.4 - HR HR HR HR
Analysis
7. Equivalence Classes and Input Partition D.18 R HR HR HR HR
Testing
8. Process Simulation D.42 R R R R R

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

\Nsys

patof SYNOPSYS

—Overall Software Testing

“"Techniques for overall software analysis and testing of
as-is applicable to modelling”

are all directly

Table A.7 — Overall software analysis and testing (6.2 and 7.2)

TECHNIQUE/MEASURE Ref Basic SIL1|SIL2|SIL3| SIL4
Integrity
1. Performance Testing Table A.18 - HR HR M M
2. Dynamic Analysis and Testing Table A.13 HR HR HR M M
3. Modelling Table A.17 - R R R R

NOTE At the overall software level the “Dynamic Analysis and Testing” technique is based on Software
Requirements Specification (Functional) and is applied on the whole integrated software (Black-box).

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

\Nsys

patof SYNOPSYS'

/Ansys

partof SYNOPSYS

Updates in Part 5

Software Management & Organization

RAIL V' IFEMA Madrid, Spain - 26-28 November 2025

Organizational Structure Evolution

EN 50128:2011 EN 50716:2023

O - . AP W NS W S NS XSS S S WO N VR S N Y W N N Y
: iy . 1
1 1 PM
] | i g oommead SILI &SIL4 i :
SiL3 & $|L4: 1 : - & |
\ ‘ RQM, DES, IMP I INT, TST ! VER VAL : - RQM, DES, IMP TST VER VAL :
| Sy filysaysngygy gy e e e ————————— i
B e g
! 1 ' i i
| . Hreu) | - | =
1 1]
I - ¥ - i I
SIL1& SIL2Z} | | i : si1asiz! : i : [
i - i
| | ROMDES, mp INT, TST | [VER, VAL I : I RQM, DES. IMP TST VER, VAL |
g | : i
]
e e L B ety femmmmmmmmmmmmmmmmmmmmmm—e—e———————
]]
: - i) : »- :
siLo 1 I ! | ======a Basic i i
! 1 Integrity i ! i
1 RO 1 i i !
i M, DES, IMP INT, TST, VER, VAL H I
1 1 RQM, DES, IMP TST.VER, VAL 1
e e = i i
Koy-..-.....-...-.-.--....-.--...-.....-.---.-....---....—.--.J
Koy
can be the same person
l--—--------- me'h““mwr‘m
1 : can be ihe same organization s ==
CR R ——— i
: [] Prioject taam
e shall report to the Project Manager -
[RTR——— canreport to the Project Manager | s ——— Can repon: 16 the Project Manager
—" shall not report 1o the Project Manager pr— Shall it repor 1o the Project Manager
PM Progect Manager ASR Assassor P Propct Manages ASR Asbas 0
ROM Requirements Manager INT Integrator ROM Regurements Manager TST Tasier
T8T Tester
DES Designer VER Verifiar DES Designor VER Venfuer
IMP Implementer VAL Vabdator IMP Implementer VAL Validator
NOTE For the role of the Configuration Manager, see Table B.10, there are no
independence requirsments NOTE The Configuration Manager is nol shown, see 5.1,.2.10 for relevant requirements

Figure 2 - lllustration of the preferred organisational structure Figure 2 — lllustration of the organizational structure \ n sys

26 Ansys, part of Synopsys ©2025 =7\ | S /FEMA Madrid, Spain - 26-28 November 2025 partof S\/"[]PS\/S@

Organizational Structure changes

1.From 3 org charts to 1baseline +add-ons.

- 50128 had separate “preferred structures” by SIL.

- 50716 collapses to: a common baseline (5.1.2.10), extra test-independence rules (5.1.2.11), and a short SIL3-4 add-on (5.1.2.12).
2.Principle-based independence.

- Keeps core separations: Validator/Verifier #RM/Designer/Implementer (b) no dev Validator reporting (c); Validator #PM (d);
Config Manager #

Validator (e). Drops rigid role trees; focuses on demonstrable independence.
3.Stable V&V roles.
- Verifier/Validator is not just a person, but an entity
- Verifier/Validator fixed at project level; any personnel change must be justified and not jeopardize activities.
4.Clear testing independence.

- Devs can't test their own component; may test others/higher levels if independence is shown (5.1.2.11¢). If Validator tests —another
Validator

reviews (a). If Verifier tests —a Verifier or Validator reviews (b).

5.High-SIL firewall kept.
- Validator shall not reportto PM (5.1.2.12a).

6.Assessor modernized.
- Required for SIL1-4; can be from any stakeholder but organizationally independent of the project team and empowered (5.1.2.4-7).

7. Terminology. \Nnsys

- SILO replaced by “Basic Integrity” but coV&re Ot 6 Y4 Hdih ek iS4 s pember 2026 partof SYNOPSYS

/Ansys

partof SYMOPSYS’

Updates in Part 6

Support tools and Languages

RAIL V' IFEMA Madrid, Spain - 26-28 November 2025

6.7Supporttoolsandlanguages

The relation between the tool classes and the

applicable subclauses is defined within Table 1.

EN 50716 Table 1 — Relation between tool class and applicable subclauses
Tool Applicable requirements for SIL 1 to SIL 4 | Applicable requirements for Basic
class Integrity
T1 6.7.4.1 6.7.4.1
T2 6.74.1,6742 6743, 67410, 6.7.4.11 6.7.4.1
T3 6741, 6742 6743 6744 6745, 6741,6743 67410 67411

6.7.4.9 67410, 6.7.4.11

EN 50128 Table 1 - Relation between tool class and applicable sub-clauses
Tool class Applicable sub-clauses
T 6.7.4.1
T2 6.74.1,6.7.4.2,6.7.4.3,6.7.4.10.6.7.4.11
T3 6.74.1,6.74.2,6743,6.744,6.7450r

6.746,6747,6.748,6.74.9,6.74.10,6.74.11

Applicability by Integrity level
SIL-specific wording

Basic Integrity Track, for non-SILdevelopments,
obligations are lighter, especially for T2.

Evidence for T3(Code Generators)

EN 50716 6.7.4.4requires evidence viaone or more named
techniques and spellsout what “history of use” means

(documented projects, anomaly lists, version lineage, periodic confirmation)

Fall-back /compensating measures
Fewer escape hatches; expectations are clearer and
stricterfor T3in EN 50716.Itremoves “Plan B.” 6.7.4.6—

6.7.4.8subclauses (marked “intentionally leftblank”) and expects you to
meet 6.7.4.4using its defined evidence paths.

Operational tools exclusion.

EN 50717 explicitly says that tools after development as part
of the system are treated as software

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

Software Component

"Constituent part of software which has well-defined interfaces and behavior with respect to
the software architecture and design " EN 50716 [3.1.4]

A software component fulfils the following criteria:

« jtis designed according to "Components” (see Table A.20);

« jt covers a specific subset of software requirements;

« jtis clearly identified and has an independent version inside the configuration management system or is a
part of a collection of components (e.g. subsystems) which have an independent version.

Table A.20 — Components

TECHNIQUE/MEASURE Ref Basic SIL1 | SIL2 | SIL3 | SIL4
Integrity

%] ® W | R R R
w| R [R |R|[R|R
NI

3. Fully Defined Interface D.

Requirement:

1) Information encapsulation are only highly recommended if there is no general strategy for data
access.

NOTE Technique/measure 3 is for Internal Interfaces.

[/ ©2025Ansys Inc, part of Synopsys Group RAIL V' IFEMA Madrid, Spain - 26-28 November 2025

Ansys

parof SYNOPSYS

Top-Down Desigh and

- /]
System Development Phase (external) . R
Software Maintenance Phase (9.2)
System Requirements Specification o
System Architecture Description fzt.ﬂl\\'nrc ,\\‘I:nlnlcn:mw Regiids
System Safety Plan Plan Pl Chad ol

\

Software Requirements Phase (7.2) " E el
'Suf e hequirements Fhase (A Software Validation Phase (7.7)

Software Requirements Specification

Overall Software Test Specification —> Overall Software Test Report

Software Validation Report
Software Requirements Veriticatuon Report

Software Arch. & Design Phase (7.3)

Software Architecture Specification Software Integration Phase (7.6)
Software Design Specification
Software Interface Specification
Softwure Integeuon ‘Tess Speciiication
Softwure/Hurdware Integration Test
Specification

——>Software [ntcgration Test Report
Software/Hardware Integration Test Report
Software [ntegration Verification Report

Software Architecture and Design

|

Software Component Design Phase (7.4)

Verificatiop Report

Software Component Testing Phase (7.5)
Software Component Design Specification s fwine Componerit sl Repon
= N e ~ - —_— are L.ompon N Cpo!
Software Component Test Specification i : '

et 3 e Software Source Code Verification Report
Software Component Design Verification e

Report

Software Component Implementation Phase (7.5)

Software Seuirce Code & Supporting Documentation

[/ ©2025Ansys Inc, part of Synopsys Group RAIL V' IFEMA Madrid, Spain - 26-28 November 2025

parof SYNOPSYS

Verification at Each P hase e "

Software Maintenance Phase (9.2)

System Requirements Specification = = '

Ob . System Architecture Description 29'.‘““9 2‘1[,“,”“0“;;"?” ljfwrd‘\
jeCtlve System Safety Plan Plan e i

The objective of software verification is to examine and arrive at a ‘
judgment based on evidence that output items (process, . :

: : ; L Sty Regpiterants P {4 Software Validation Phase (7.7)
documentation, software or application) of a specific development ! ‘ . ;

Softwure Requirements Specification

. . . . S —> Overall Software Test Re
phase fulfil the requirements and plans with respect to completeness, Owerall Software Test Specification vl Sl Tad Re o

Software Validation Report
correctness and ConSIStency. [6.2.1] Software Requirements \:licmxon Report

Software Arch. & Design Phase (7.3)

Software Architecture Specificiition Software Integration Phase (7.6)
Software Design Specification
Software Interface Specification
Software Integrinon Test Specinication
Software/Hardware Integratuon Test
Specification

——>Software Integrition Test Report
Software/Hardware Inteemition Test Renort
Softwure [ntegration Verification Report

Software Architecture and Design
Verification Report

|

Software Component Design Phase (7.4 9 . ’ 3
i P &) Software Component Testing Phase (7.5)
Soltware Component Design Specification s X s
S 5 P AR SR e —— Software Componcnt Test Report
Software Component Test Specification

g . ; Software Source Code Venfication Report
Software Component Design Verification - - s

Report

Software Component Implementation Phase (7.5)

Software Source Code & Supporuing Documentation

Nnsys

parof SYNOPSYS

8 November 2025

Lifecycle and Documentation

Table A.1 — Lifecycle issues and documentation (5.3)

DOCUMENTATION Basic | SIL1 | SIL2 | SIL3 | SIL4
Integrity
Planning
1. Software Quality Assurance Plan HR HR HR HR HR
2. Software Planning Verification Report R HR HR HR HR
3. Software Configuration Management Plan HR HR HR HR HR
4. Software Verification Plan HR HR HR HR HR
5. Software Validation Plan HR HR HR HR HR
Software requirements
6. Software Reguirements Specification HR HR HR HR HR
7. Overall Software Test Specification HR HR HR HR HR
8. Software Requirements Verification Report R HR HR HR HR
Architecture and design
9. Software Architecture Specification R HR HR HR HR
10. Software Design Specification R HR HR HR HR
11. Software Interface Specifications HR HR HR HR HR
12. Software Integration Test Specification R HR HR HR HR
13. Software/Hardware Integration Test Specification R HR HR HR HR
14. Software Architecture and Design Verification Report R HR HR HR HR
Component Design
15 Snftware Camnonent Nasian Snacifination - HR HR HR HR
) 7 Documents)

IFEMA Madrid, Spain - 26-28 November 2025

Objectives

“To structure the development of the software
into defined phases and activities

To record all information pertinent to the
software throughout the lifecycle of the
software.” Extract from

Requirements

A lifecycle model for the development of
software shall be selected.

For each document, traceability shall be provided in
terms of a unique reference number and a defined
and documented relationship with other documents

Documents may be combined or divided. Some
development steps may be combined, divided or,
when justified, eliminated.

Documents can be generated from databases or
modelling tools, in which case, traceability shall be
preserved. Extract from

\NIDYD
patof SYNOPSYS

Traceabillity

5.3.2.7 For each document, traceability
shall be provided interms ofaunique
reference number and adefined and

documented relationship with other

documents.

6.5.415Within the context of this document,
and toadegree appropriate to the specified
software integrity level, traceability shall
particularly address

a) traceability of requirements tothe design or
other objects which fulfil them,

b) traceability of design objects to the
implementation objects which instantiate
them,

c) traceability of requirements and design objects to
the tests (component, integration, overall test) and
analyses that verify them

Traceability shallbe the subject of configuration management

Traceability

N
-Ji:r!

ﬂ

“3.1.40 Degree to which a LLLL R

relationship can be

established between two ®

or more products of a I O
development process,

especially those having a

predecessor / successor or

master / subordinate

relationship to one another”

\Nsys

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

Table A.17 — Modelling

echnigues and Measures - illustration

Table A.4 — Software design and implementation (7.3, 7.4 and 7.5)

TECHNIQUE/MEASURE Ref Basic sIL1|siL2|siL3l| siL4
Integrity

1. Modelling Table A 17 R HR HR HR HR
2. Structured methodaology D52 R HR HR HR HR
3. Modular Approach D.38 HR M M M M
4. Components Table A.20 HR HR HR HR HR
5. Design and Coding Standards Table A 12 HR HR HR M M
6. Analysable Programs D2 HR HR HR HR HR
7. Structured Programming | D.53 HR HR HR HR
8. Suitable Programming Languages | rable A.15 | R HR HR HR HR

Requirements:

1) An approved combination of techniques or software integrity levels 3and4is 1, 3, 4, 5.
2) An approved combination of techniques for software integrity levels 1 and 2 is 2, 3, 4, 5 and one

from 7 or 8.

D.53 Structured programming

Aim

To design and implement the software component in a way which makes practical the analysis of the
software component. This analysis should be capable of discovering all significant component
behaviour.

Description

The software component should contain the minimum of structural complexity. Complicated branching
should be avoided. Loop constraints and branching should (where possible) be simply related to input
parameters. The software component should be divided into appropriately small modules, and the
interaction of these modules should be exolicit. Features of the proarammina lanauaae which

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

TECHNIQUE/MEASURE Ref Basic SIL1 | SIL2 | SIL3 | SIL4
Integrity

1. Data Modelling D65 R HR HR HR HR
2 Data Flow Diagrams D11 - HR HR HR HR
3. Control Flow Diagrams D 66 R HR HR HR HR
4. Finite State Machines or State Transition D27 - HR HR HR HR
Diagrams

5. Petri Nets D55 - HR HR HR HR
6. Decision/Truth Tables D13 R HR HR HR HR
7. Formal Methods D.28 - HR HR HR HR

\nsys

partof SYMOPSYS’

Organizational Structure for SIL3 &SIL 4

________________________________ =
PM :

|

RQM, bes, IMP TST VER VAL :
_______________________________ :
PM Project Manager E
RQM Requirements Manager E
DES Designer E
IMP Implementer Can be the same person E
TST Tester E
VAL Validator -- shall not report to PM i
VER Verifier eam

ASR Assessor

ASR

Objectives [5.1.1]

“a) To reduce the probability of people in different roles
suffering from the same misconceptions or making the same
mistakes by ensuring independence between roles.

b) To ensure that people in roles which involve making
judgements about the acceptability of a product orprocess
from the point of view of safety should not be influenced by
pressure from their peers or supervisors, or by considerations of
commercial gain”

“[5.1.24] An Assessor shall be appointed”

“5.1.2.6] The Assessor shall be independent from the project
team and shall be a different entity, organizationally
independent, from those undertaking other roles in the project.”

\Nsys

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

Personnel Competence and Responsibilities

Responsibilities shall be compliant with the requirements defined in ().

5.2.1 Objectives

To ensure that all personnel who have responsibilities for
the software are competent, empowered and capable of
fulfilling their responsibilities by demonstrating the ability

to perform relevant tasks correctly, efficiently and

consistently to a high quality and under varying

conditions.

1. The key competencies required for each role in the
softwaredevelopment aredefinedin Annex B.

2. Documented evidence of personnel competence,
including technical knowledge, qualifications, relevant

experience and appropriate training, shall be maintained
by the supplier’s organization in order to demonstrate
appropriate safety organization.

5.2.2.4 Once it has been proved to the satisfaction of an
Assessor or by a certification that competence has been
demonstrated for all personnel appointed in various roles,
each individual will need to show continuous maintenance
and, ifneeded, development of competence.

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

Table B.2 — Designer role specification

Role: Designer

Responsibilities:

@ N DS W NG

shall transform specified software requirements into acceptable solutions
shall own the architecture and downstream solutions

shall define or select the design methods and supporting tools

shall apply appropriate design principles and standards

shall develop component specifications where appropriate

shall maintain traceability to and from the specified software requirements
shall develop and maintain the design documentation

shall ensure design documents are under change and configuration control

Key competencies:

A 0NN =

6

shall be competent in engineering appropriate to the application area

shall be competent in safety design principles (only for safety-related functions)

shall be competent in design analysis and design test methodologies

shall be able to work within design constraints in a given environment

shall be competent in the problem domain

shall understand all the constraints imposed by the hardware platform, the operating system and

the interfacing systems
7. shall be competent in application engineering for development of application data

\Nsys

patof SYNOPSYS'

/Ansys

SCADE

Proven Model-Based Solution for Safety
Critical SIL4 Railway Embedded Software
Applications supported by Formal Language

For Embedded SW Control Applications

For Embedded HMI Applications
“':!- & |t -‘

AT

1=

Key Elements of

Key Process Areas:

Requirements Engineering
Software Architecture &
Design Coding &
Integration Verification &
Validation Configuration &
Change Management

Software Safety Assurance

SIL-Dependent
Requirements:

Stricter documentation,
verification, and
independence criteria
as SIL goes from 0 to 4.

- N 50716

Emphasis on Tool
Qualification:

Tools must be qualified
if they contribute to
safety-related outputs.

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025

Advocates for
Modelling Languages

Explains possible usage
benefits of modelling
approaches during all phases
of the development of
Safety-critical components.

\Nsys

patof SYNOPSYS

Benefits of Ansys SCADE Model-Based Design Tools

* Formal and Deterministic Language

With MBD:
. . It is easier to design,
* Automatic Generation of Code verify, maintain,
evolve, etc.
* Automatic Generation of Documents '
* Reduce or Elimination of Efforts If the MBD
o tools are
- Plan “ Qua"fied /
- Design 20 Certified!
- Coding 'ﬁ
- Testing
- Documentation 10 I I I
) Plans SW Design Coding Testing SW/HW Doc.
Integration
SCADE Based Testing

M Manual Based
or non-qualified/certified MB

\Nsys

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

EN-50716:2023 Guidance with SCADE

... Software Maintenance
Software

Software Requirement EEEEEiiiii b Software Validation

\nsys SCADE ARCHITECT

Software Architecture and
Design

\I’ISYS SCADE SUITE \nsys SCADE TEST

Software Component Software Component

Design Testing

---------------------- Software Integration

\nsys SCADE KCG

Software component

Tl EIT I Code Generated Automatically \n sys
=Y\IWBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

Tool Qualification

The objective is to provide evidence that potential failures of
tools do not adversely affect the integrated toolset output in a
safety related manner [6.7.1]

Ansys KCG Code Generator is classified as T3 offline
support tool according to Railway & Industrial standard,
qualified for the use in safety-related software

* Tool class T1 tool which is not used to generate outputs which development

can directly or indirectly contribute to the executable code
(including data) of the software

CERTIFICATE
No. Z10 0

66420 0027 Rev. 20

* Tool class T2 tool which is used to support the test or

verification of the design or executable code (including data), * IEC61508-1:2010 (SIL 3)

where errors in the tool can fail to reveal defects but cannot * IEC61508-3:2010 (SIL 3)
directly create errors in the executable software (including 1ISO 26262-8:2018 (ASIL D)
data) « EN50128:2011 (SIL 3/4)
- for requirements-based test * EN50128:2011/A1:2020 (SIL 3/4)

 EN50128:2011/A2:2020 (SIL 3/4)

- for code and model coverage

- for SW-HW integration test (official TUV’ stamp expected these days, by end of 2025 the

. . latest)
- for automatic doc generation

-
-
<o
s
=
e
w
=3
*
o
e
-
o
I
=
[
™
=}
*
-
=<
»*
=
e
=
-
a
™
(=}
*
"
-2}
&
o
*
-
=
<
-
e
-
=
-
o
*
-
<
>
e
-
=
w
~

* Tool class T3 tool which is used to generate outputs which can
directly or indirectly contribute to the executable code

(including data) of the system

- for automatic code generation
\nsys

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

Software Architecture and Design

Clauses 7.3
Guidelines C.2.6.3

Option #1:

\nsys

SCADE Suite

Option #2:

» Synchronization ensures consistency of interfaces and Internal * |dentify high-level functions / components
Block Diagrams (IBD) » Define the component interfaces: names, data types
» between the SCADE Architect Design components and the * Model the data flow and control flow between functions
SCADE Suite operators » Verify the model consistency using SCADE Suite semantic checks
\nsys * Prepare the framework for the detailed design process:
SCADE Architect define the top-level components while ensuring consistency of their
interfaces
WheelSpeedSensor | ITIES
ECU \ : r.\ o 1 on |
%is\\pShdeDetect\on_ControIIel_ n S S E
SpeedVector [| ‘:‘j SpeedVectovSyﬂemState :})ﬂ y e '_‘-> = NoCyckes >— SpeedsState
Mot ‘_i) e spe‘eedss:a:e[1_)—‘ SCADE Suite Stop * N |—> SipSiideVector SpesdVzctor >_ Checkspesdviactor _
R I TrainSpewS“pS“devecm‘_)7‘ OffState '—'-> SystemState ITEirSpE: >— P
- > s -
. / OnState >5y=. tat:
. - Tanpasg LTS |_Trainspeed % SigSissvactar
iTrlnSDEE e fomeoas N T W'*;‘SS‘:': -
> MeCyoes > Root node operator that performs 2 main tasks :
; + Compute if train is in movement to detect if the system
SpesdVector > | Traininkvt _..b |_SystemOn is on or not.
(hovesspes +If the system is on, check if all speeds are identical.
Viargetspesa If it is not the case, detect the kind of deviation on each axle
TranSpeed > ComputeDisplaySpesd cpessFaach
_> GumentSpezdtolor

AVoV] "N // vI/A vIadnid, opaiil < Llj'28 November 2025

AV) A
patof SYNOPSYS

Software Architecture and Design

“Most of the modelling techniques of

Table A.17 -- Modelling

1.

2.

10.

11.

12.

13.

EN-50716:2023 Guidance with SCADE

System Development
(external)

System

Software Maintenance

Software

Software Requirement il Software Validation

Data Modelling

Software Integration

Data Flow Diagrams

Control Flow Diagrams

Software Component
Implementation

Finite State Machines
Petri Nets
Decision/Truth Tables
Formal Methods

Performance Modelling

Prototyping/Animation

Structure Diagrams

Sequence Diagrams

Cause Consequence Diagrams-—«—

Event Tree Diagrams

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

B 2. Data-flow

If axle speed is equ
(e.g, ParallelSpeed

Bockt
[Detects if an axle it ‘

then there is no slip
else if TrainSpeed

then the axle i
[elsetheaded

3. Control flow

can be used for the architecture and design”

HIwp Y BBl v Vs BB = L

1 [Fasoun, nt (Hlasgm .1 [Flougan mueiobaton) 5 aspum comener 1 4 b

\Nsys

patof SYNOPSYS'

Software Component

Design

“techniques of Table A.4 related to suitable programming languages need to be adapted

EN-50716:2023 Guidance with SCADE

System Development o (iDEE@I L Bxnnpe 79 ERS
(external) System 6« CHRG Mpwd Y Bo€D alv Vv
Software Maintenance T = RUREE ooon: z C =
~ PR —

Software

Table A.4 (C1) — SW Design

Software Requirement i Software Validation

1 Modelling (Table A.17)

Software Architecture and

BN Software Integrati
Design Software Integration

2 Structured Methodology

Software Component Software Component

Design Testing

3 Modular Approach

Software Component
Implementation

4 Components (Table A.20)

Encapsulation

Parameter number limit

Fully Defined interface

5 Design Standard (Table A.12)

e ot Viea Opeater imen Unowt med Tesn

[T T—_——

Wiow WRTIAR Incomitenies Sewr

6 Analyzable programs

7 Structured Programming

8 Suitable Programming Languages | o8

0ot node operalor that performs 2 main tasks

Compute if train is in movement to detect if the system
is on or not

fthe system is on, checkif all speeds are identical

Iftis not the case, detect the kind of deviation on each axie

(Table A.15)

Defined operational semantics . bt eroviing

otk levels of components L

Name Test

Supports commenting

Messages Dump Infolog Buld Smultor MATLAB inconsitendes Biowse

Packages, collections of
subprograms shall be

several =

BeEr =LA

Strong type checking ,

Modular Approach

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

Hpedy BOLD v VX

R ST A
W L

pertor Insert Layout Project Tools Waigate Window Help
-iDER@ XDBxn 0B ? Q@ S
c &5 | M wdy

- B i Rapidpioto

<D av vy BeE>i- -) CHCS
Bo 5 w©

woter 1 x [E]dagram.Simul 1 [3]dagram, Checkspeedvector! [3]dagram Checkadespeed. 1 (Z]aiagram avs

Root node operator that performs 2 main tasks
-+ Compute if train is in movement to detect if the system
o | isonornot
+ If the system is on, check if all speeds are identical
i itis not the case, detect the kind of deviation on each axle|

The schematics can be ‘
commented to ease

-
patof SYNOPSYS'

Design Verification

EN-50716:2023 Guidance with SCADE

System Development
(external)

System

Software Maintenance

SW Design Table A.4 (CT

Software

Software Requiremant Ll Software validation

1 Modelling (Table A.17)

Software Architecture and

Design BE Software Integration

2 Structured Methodoldgy

Software Component
Testing

Software Component
Design

3 Modular Approach

o

Software Component
Implementation

4 Components (Table A.20)

Encapsulation

Parameter number limit

Fully Defined interface

5 Design Standard (Table A.12)

6 Analysable programs
7 Structured Programming

8 Suitable Programming

Languages (Table A.15) WCET report

generated

Defined operational semantics

Strong type checking

Supports Static Analysis

Static Analysis

Rules and Metrics

P o e |f

60t node operator el performms 2 main tasks.
+ Compute if rain is n movement to detect f the system

s on or not.
+ If e system is on, check If all speeds are identical
it is not the case, detect the kind of dewiation on each aie

] o 1 o

. ber 2025 s

Model Based Verification

Juca
on each ae

Operational Semanti

D Ry

Analyzable Programs

+
*
-
"
c

Formal Verification '—ys
T yIOPSYS

CS

Design Verification static Analysis table a1

TABLE A.19 SIL SIL SIL SIL
Technique / measure

performs control flow and data

1. Control Flow Analysis flow analysis of SCADE models. It also checks Strong data typing,
2. Data Flow Analysis D10 HR HR HR HR Initializations, Data dependencies, Cycle detection
3. Software Error Effect D.25 R R HR HR 2k i . ———1 ocal_crusespeea
Analysis iy |
3. Walkthroughs /Design D56 HR HR HR HR AR T =
Reviews Co e P
S;tL‘d /, .I...: -

POC PPD Guifstream

Friday January 11 2008 14:30:55

Result of check for operator
CruiseControl::CruiseControl/ in model CruiseControl

. $ Tabla 01 Canbants
,_':\ g
&

automatically

generates the =
Design Review —
Documentation

1 error(s) detected -

Category

Semantic Error ERR_100

Message
Type: Type mismatch at CruiseControl::CruiseControl/CruiseSpeed/
This expression has type (real) but is here used with type (bool)

\Nsys

Viadrid, Spain - 26-28 November 2025 pal"t of SynUPS‘IS@

Design Verification

Checker: check models against:

Design Standard

. Find non-compliances to the

A Python

, with dedicated report

Metrics: complexity analysis
on your models

. Get high-level metrics

Settings

|_!§ Metrics and Rules Checker KCG

Model Metrics Rules

Manage metrics...

Al
[] Model

[Total number of types

[] Total number of constarts

[] Total number of diagrams

[] Total number of operators

|:| Total number of packages

[] Total number of sensors

= Operator

Number of inputs

Number of outputs

Total number of local varables

Total number of probes

Total number of signals

b Al Todol cniemboe of vincr cece—d e e

~

SCADE Suite Design Verifier (DV) is a Formal Verification tool
powered by Prover

* Identify such as division by zero, overflows, Infinite or
NaN values
* Formally express and assess
between two design choices/implementation

* Analyze & covering
uncovered parts

Properties Design

o Scade
Formalized Wit o
SCADE Verifier Component
=, T {1
o : ‘v Yes/No
Slide is detected within NbCycles —Jtrainspeed slinsideVector -
& Proof.prop1 Valid

S P&fipS idéDetection: Contiafiér 512t =

Wheel_ State 1 Either the property is always satisfied
mﬁE" - AfteitTick<<NCycles>utput1 [— > DetectionOfSlide . e .
pouRenge = ke Cyctes> p > ... or a scenario falsifying the property is

automatically generated

(XRN
|

\Nsys

patof SYNOPSYS

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

Metrics and Design Standard Rules & Formal Proof

Software Component Implementation

Table C.2 — Component implementation and testing typical adaptation for modelling

“When using models at software
component level, the subclauses applicable
to the source code can be contextualized in
similar subclauses applicable to models (see
Table C.2)”

“If the source code is automatically
generated and neither modified after
generation nor input of analysis,

, as 6.7 would apply
for the automatic code generation tool”

SCADE KCG generated
code, does not need to

be modified nor

SUBCLAUSES

TYPICAL ADAPTATION FOR MODELLING

7.3.4.2 The size ad complexity of the
de\ 2loped source ¢ de shall be balanced.

7.5.4.2 The size and complexity of the developed
model shall be balanced.

7.5.4.> The Software Jource Code shall be
readab. =, understandal 'e and testable.

7.5.4.3 The model shall be readable,
understandable and testable.

7.5.4.4 Ti = Software Sou. ~e Code shall be
placed una r configuration :ontrol before the
commencen. 2nt of documen. d testing.

7.5.4.4 The model shall be placed under
configuration control before the commencement of
documented testing.

7.5.4.10 After t. e Software Sou e Code and
the Software Coiponent Test Re»ort have
aeen established, rerification shall address

a, the adequacy of 1.e Software Sou ce Code
as n implementation »f the Software
Con »nonent Design Sp. cification,

b) the -orrect use of the Lhosen technique s
and me ysures from Table .}.4 as a set
satisfying 4.8 and 4.9,

c) determii ing the correct app ‘cation of the
coding stanc ards,

d) that the So.'ware Source Code meets the
general require.nents for readability and
traceability in 5.5 2.7 to 5.3.2.10 ana 'n
6.5.4.14 t0 6.5.4.17, as well as the spe zific
requirements in 7.5.4.1t0 7.5.4.4,

e) the adequacy of th.: Software Componu nt
Test Report as a recor.' of the tests carriea out
in accordance with the £ »ftware Component

Test Specification

7.5.4.10 After the model and the Software
Component Test Report have been established,
verification shall address

a) the adequacy of the model as an implementation
of the Software Component Design Specification,

b) the correct use of the chosen techniques and
measures from Table A.4 as a set satisfying 4.8
and 4.9,

c) determining the correct application of the
modelling standards,

d) that the model meets the general requirements
for readability and traceability in 5.3.2.7 t0 5.3.2.10
and in 6.5.4.14 t0 6.5.4.17, as well as the specific
requirements in 7.54.1t0 7.5.4.4,

e) the adequacy of the Software Component Test
Report as a record of the tests carried out in
accordance with the Software Component Test
Specification

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

patof SYNOPSYS

Ansys KCG Suite Qualified Code Generator

Qualified at SIL3 / SIL4 => There is no need to verify the generated C code Optimize

3
with
-
expansion
O not 4
system s on, check if all speeds are identical.

Compler ” 0 not the case, detect the kind of deviation on each ax
Code viegraon

* Full support of Scade formal language

* KCG generates code that satisfies the
constraints of safety-critical embedded

s
e if train is in movement to detect if the system

ornot
system s on, check If all speeds are dentcal.

software:] TS pregemmSeathasa
- (target and OS independent) e i
- and with respect to the de —
(name / annotation propagation) == p—
- code for all constructs L., .. — m e

- memory allocation

- , bounded loops only

- time s ,,
* Standard ANSI C code generation: e
: compliant (2012) = variables oL
- compliant (2016) | " cohl:::::nt

- Compatible with standard C compilers
* Limited size/complexity/parameters:
- SCADE Suite Rule Checkers to check these rules

Software Component Analysis and Testing

“Techniques for software component analysis and testing of Table A5 are directly applicable as-is to modelling”
EN-50716:2023 Guidance with SCADE

SW Analysis and Testing
Table A.5

1.
2.

3.

4.
5.

6.

System Development
(external)

Software Requirement

Formal proof

Static Analysis (Table A.19)
Control Flow Analysis
Data Flow Analysis
Walkthroughs / Design review

Dynamic Analysis and Testing
(Table A.13)

System

Software

O S YO S o

Phototyping /
Animation

Bl Software validation

ponent ly

lysis and Testing

No misfunctions
induced nor
detected

=)|

Vo' oo a4
O O O O O O 0O O EE T

Prototyping / Animation

Prototyping / Animation E———

Test Case Execution Boundary value
Equivalent Classes and Input
Partition Testing

Metrics

Test coverage for Code e

(Table A.21)
Statement, Branch, Data Flow :

Test Coverage for Model and Code

Performance Testing (Table A.18)
Response Timing and Memory
Performance Requirements

=7\ | S /FEMA Madrid, Spain - 26-28 November 2025

Test Coverage for Model and Code

\Nsys

patof SYNOPSYS'

Software Component Analysis and Testing

Dynamic Analysis and Testing

Techniques for Models supporting testing activities can be used to simulate the environment of
the software under test (i.e., model-in-the-loop)

TABLE A.13 SIL SIL SIL SIL
Technique / measure

1. Test Case Execution
from Error Guessing

2. Test Case Execution
from Error seeding

3. Structure-Based
Testing

4. Test Case Execution
from Cause Consequence
Diagrams

5. Prototyping /
Animation

6. Test Case Execution
from Boundary Value

7. Equivalence Classes
and Input Partition
Testing

8. Process Simulation

D.20

D.21

D.50

D.6

D.43

D.4

D.18

D.42

HR

HR

HR

HR

R R System Design

MiL allows to exercise the behavior of the model to provide
repeatable evidence of compliance of the model to the software

System Requirements

Software Design

m Software Verification & Validation |

requirements by running Requirements-based Testing

\

Software
Requirements

Requirements
Validation

[SW Requirements Validation >

Software Components
Design
(SCADE Suite Models)

[SW Design Veriﬁcation>

\nsys

SCADE Suite

Software Code Target Testing
(SCADE Generated Code)

HR HR L
R R
R R
HR HR
HR HR
R R
RAIL |

Requirements-based

Test Creation

Test Execution
on Host

\nsys

SCADE Test

Model

Coverage Analysis

Test Execution

on Target n sys

e SYTOPSYS

Software Component Analysis and Testing

Model Coverage

“techniques of are very specific to imperative programming languages. Alternative coverage criteria need then to be
defined depending on the modelling notation used with the objective to cover all parts of the model (e.g. components, interfaces,
data flow, control flow) with the same level as with programming languages”

Model Coverage View * O X
SCADE Corresponding criterion QLOeL /M ® - X
Model Coverage Criterion | sense for code coverage TestEnvironment etp P
A.21 = TestProject .etp
+- il | Station State Management (14/14)! ||
Influence Statement Coverage =@ StationStateMgmt (324/492) -
+- ik Point (46/46) -
.. .. +- Tl Signal (14/14) sz [
Observable Decision Decision Coverage =R ¥ Simu_SignalRules (199/363)| — [
Coverage (O DC) q, dnfluence: SignalState - || —
- [1239, 1240, 1241, 1242, 1243, 1244, | 245, | - [
Observable Modified Modified Condition @, cinfluence> TrackState Lot > L
Condition / Decision / Decision Coverage (MC/DC) % ‘i[g:'gnﬂeilﬁz'ﬂi_;ﬂfé} —
+ _ ar _| I
Coverage (OMC/DC) 43 _[33%or_1312(3/6) L]
@, <rfluence>|_Track3 —
] - 1325 0r_L229 (3/6) (=3 —
Benefit: Once 100% model coverage is achieved with % <i[g;;nceigﬁni_rﬁrt3é}
& _ ar _| (B
SCADE Test Model Coverage and a given criterion, user @, <rfluence> |_Track4
. . : L307 or _L310 (3/6
can claim 100% code coverage of the SCADE Suite KCG : pbg
generated code in corresponding criterion sense @, dnfiuence>|_Point)

Q, dinfluence |_Track 10

Q, <influences |_Track1

Q, dnfluence: |_Pointd \n sys
dnfluence: |_Paint2

VNINE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

EN-50716:2023 V-cycle with Ansys SCADE
LifeCycle & Documentation

System Development Phase (external)

\nsys

SCADE Architect

Software Requirement Phase (7.2)

Software Requirements Specification
Overall Software Test Specification

\nsys

SCADE Suite

Software Architecture and
Design Phase (7.3)

Software Architecture Specification
Software Design Specification
Software Interface Specification
Software Integration Test Spec
Sw/Hw Integration Test Spec

\nsys

SCADE Suite

Software Component Design Phase(7.4)

V 4

Software Maintenance Phase (9.2)

Software Maintenance Records
Software Change Records

Software Validation Phase (7.7)

Overall Software Test Report
Software Validation Report

&

Software Integration Phase (7.6)

Software Integration Test Report
Sw/Hw Integration Test Report

\nsys

SCADE Test

Software Component Design Specification
Software Component Test Specification

Software Component Testing Phase (7.5)

\nsys

Software Component Test Report

SCADE Test

Software Planning Phase

Software Quality Assurance Plan

Software Configuration Management Plan
Software Verification Plan

Software Validation Plan

Software Maintenance Plan

Software Component Implementation Phase (7.5)

Generated with SCADE

ftware Source Code & Supporting Documentation

Software Assessment Plan

Software Assessment Plan

Software Assessment Report

A \ B (5 A
patof SYNOPSYS'

Documentation with SCADE

SwCTS
Component]1

SWCTR
Component]

SwCDS] SwCDS > SwCDS

> Component 1 Component 2 Component 3

Handmadedoc <---+ Traceability link

swxx Cenerateddoc Model dependence

55 Ansys, paft of Synopsys ©2025 =7\ | MME. /FEMA Madrid, Spain - 26-28 November 2025

SWCTS
Component 2

SWCTR
Component 2

SWITR

SwWCTS
Component 3

SWCTR
Component 3

\Nsys

partof SYNOPSYS

=N 50716 Methodology Handbook | inss

Efficient Development of Safe Railway Application Software
with EN 50716 Requirements using SCADE

This methodology handbook provides detailed explanations on how to fully

satisfy requirements of EN 50716 with a SCADE model-based development Efficient Devel
Applicati::eszzr;:?: \:/f-ts: 1géNR_r,a(;'way
i 76

approach to achieve safe and reliable software, while promoting an efficient Requirements using ScapE
model-based development and verification strategy N

* Model-based development with SCADE Suite /

* Simulation and Model Coverage EE downloa; -
. pe . on
* Formal verification ansy?com&

* Automatic code generation with KCG

Set of guidelines for developing efficient models, generating efficient code,
setting up efficient V&V strategy, etc \
\nsy

=Y\INBE. /FEMA Madrid, Spain - 26-28 November 2025 partof S‘/"UPS‘/S@

https://www.ansys.com/resource-center/technical-paper/efficient-development-safe-railway-ansys-scade-5th-edition
https://www.ansys.com/resource-center/technical-paper/efficient-development-safe-railway-ansys-scade-5th-edition
https://www.ansys.com/resource-center/technical-paper/efficient-development-safe-railway-ansys-scade-5th-edition

What you'd love about Ansys SCADE for EN 50716

Develop Safe & Reliable Reduce Development Secure your
Embedded Software Time & Costs Certification journey

RAIL

/Ansys

Partof SYNOPSYS
RAIL !

IFEMA Madrid, Spain - 26-28 November 2025

Bruno Privat - System & Mission Senior MBSE Product Executive - bruno.privat@ansys.com

mailto:Bruno.privat@ansys.com

	Slide 1
	Slide 2: Outline
	Slide 3: Railway Standard’s Evolution
	Slide 4: Safety Integrity levels and Cost
	Slide 5: Typical Railway Applications / Criticality Level
	Slide 6: EN 50128  EN 50716 Evolution
	Slide 7: EN 50716 Basic Design Principles EN 50716:2023 Introduction
	Slide 8: EN 50716 Clauses and Annexes
	Slide 9: EN 50716 Main Technical Changes wrt EN 50128:2011 and EN 50657:2017
	Slide 10: Software Integrity Levels (Clauses 4)
	Slide 11
	Slide 12: Annex C.1 Guidance on Lifecycle Models
	Slide 13: Annex C.1 Guidance on Lifecycle Models
	Slide 14: Annex C.2
	Slide 15: Annex C.2.1 Modelling
	Slide 16: Annex C.2.2 Modelling Definition “A Model is a logical representation aimed at developing, understanding, communicating, or explaining aspects of a system, entity, or process.”
	Slide 17: C.2.3 Modelling – Lifecycle Issues & Documentation A document is information and the medium on which it is contained. Information is not limited to natural language and medium is not limited to paper. Thus, models stored in databases are actual
	Slide 18: Annex C.2.5 Modelling – Support Tools & Languages
	Slide 19: C.2.6.2 Modelling – Software Requirements
	Slide 20: C.2.6.3 Modelling – Architecture and Design
	Slide 21: C.2.6.4 Modelling – Component Design & Testing
	Slide 22: C.2.6.5 Modelling – Component Implementation & Testing
	Slide 23: C.2.6.6 Modelling – Integration
	Slide 24: C.2.6.7 Modelling – Overall Software Testing
	Slide 25: Updates in Part 5
	Slide 26: Organizational Structure Evolution
	Slide 27: Organizational Structure changes
	Slide 28: Updates in Part 6
	Slide 29: 6.7 Support tools and languages
	Slide 30: Software Component
	Slide 31: Top-Down Design and iterative
	Slide 32: Verification at Each Phase
	Slide 33: Lifecycle and Documentation (Clauses 5.3)
	Slide 34: Traceability
	Slide 35: Techniques and Measures - illustration
	Slide 36: Organizational Structure for SIL 3 & SIL 4 (Clauses 5)
	Slide 37: Personnel Competence and Responsibilities
	Slide 38
	Slide 39: Key Elements of EN 50716
	Slide 40: Benefits of Ansys SCADE Model-Based Design Tools
	Slide 41: EN-50716:2023 Guidance with SCADE
	Slide 42: Tool Qualification
	Slide 43: Software Architecture and Design Clauses 7.3 Guidelines C.2.6.3
	Slide 44: Software Architecture and Design “Most of the modelling techniques of Table A.17 can be used for the architecture and design” EN 50716 C.2.6.3
	Slide 45: Software Component Design “techniques of Table A.4 related to suitable programming languages need to be adapted (Table C.1)” EN 50716 C.2.6.3
	Slide 46: Design Verification
	Slide 47: Design Verification Static Analysis Table A.19
	Slide 48: Design Verification Metrics and Design Standard Rules & Formal Proof
	Slide 49: Software Component Implementation EN 50716:2023 Annex C.2.6.5
	Slide 50: Ansys KCG Suite Qualified Code Generator
	Slide 51: Software Component Analysis and Testing “Techniques for software component analysis and testing of Table A.5 are directly applicable as-is to modelling” EN 50716 C.2.6.5
	Slide 52: Software Component Analysis and Testing Dynamic Analysis and Testing Table A.13
	Slide 53: Software Component Analysis and Testing Model Coverage
	Slide 54: EN-50716:2023 V-cycle with Ansys SCADE LifeCycle & Documentation
	Slide 55: Documentation with SCADE
	Slide 56: EN 50716 Methodology Handbook Efficient Development of Safe Railway Application Software with EN 50716 Requirements using SCADE
	Slide 57: What you'd love about Ansys SCADE for EN 50716
	Slide 58

