DOTITE

Shield Materials for EMI Interference

Fujikura Kasei Co., Ltd.

Tokyo Head Office 2-6-15 Shiba-Koen Tokyo, Minato-ku, 105-0011 Japan

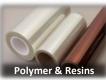
Homepage:

www.fkkasei.co.jp

Contact Person:

David Dewey Electronics Materials Division, Sales +81-3-3436-1100 d-dewey@fkkasei.co.jp

Taking on Challenges and Working Together


Introduction and Business Divisions

Fujikura Kasei produces polymer materials for a variety of applications, developing unique, value-added products based on our decades of accumulated expertise.

DOTITE Electrically Conductive Pastes

In 1957, we were the first manufacturer in Japan to develop and sell electrically conductive pastes and insulators for electronics under the brand name DOTITE. We have a wide range of inks, adhesives, and EMI shield paints.

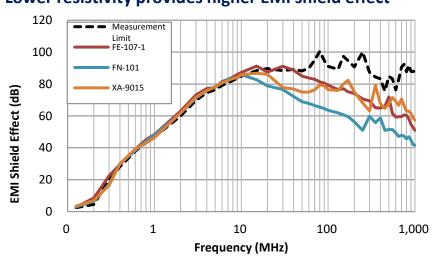
This catalogue will introduce some of our current products and latest developments in electrically conductive EMI shield paints.

Electrically Conductive Paints Offering Cost Effective Options

Model	Resin	Filler	Application Method	Drying Conditions	Resistivity (Ω·cm)	Substrate
XA-9015	Polyester	Ag	Spray, brush/spatula	60°C, 30 mins.	5 x 10 ⁻⁵	ABS, PC, etc.
FE-107-1	Acrylic	Ag-Coated Cu	Spray, brush/spatula	50°C, 30 mins.	5 x 10 ⁻⁴	ABS, PC, etc.
FN-101	Acrylic	Ni	Spray, brush/spatula	50°C, 30 mins.	5 x 10 ⁻³	ABS, PC, etc.

Dried Film Appearance

> Different conductive fillers provide different coloration


XA-9015 (Ag)

FE-107-1 (AgCu)

EMI Shield Effect (KEC)

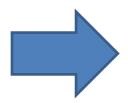
➤ Lower resistivity provides higher EMI shield effect



For Semiconductor Packaging Replacement for Sputtering

Model	Resin	Filler	Application Method	Drying Conditions	Resistivity (Ω·cm)
XA-1110	Phenol	Ag•Cu	Spray, spin coating, screen printing	150°C, 30 mins.	8 x 10 ⁻⁵
XA-5713EE	Ероху	Ag Dispensing, screen printing (vacuum printing)		150°C, 30 mins.	8 x 10 ⁻⁵
XA-9508	A-9508 Thermoplastic Special Ag Spray, screen printing		150°C, 30 mins.	6 x 10 ⁻⁶	

Effective in Very High Frequency Bands (XA-1110 Shield Properties Graph)



EMI Shield(For Electronic Components)

Package Level EMI Shield

Board Level Shield

Convert to Package Level Shield

Package Level Shield

 Metal (electrically conductive) cap attached to circuit board by solder
 Large circuit boards require extra space, add weight and thickness to product design, requiring complex reworking.

Superior Coating Uniformity (Top and Sides)

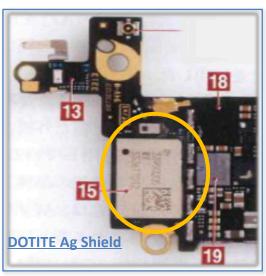


➤ Uniform coating possible even on angled surfaces

Paint applied directly to package as a single unit

Allows for smaller • thinner • lighter designs. Makes high density circuit boards possible, and frees up design choices.

Adhesion



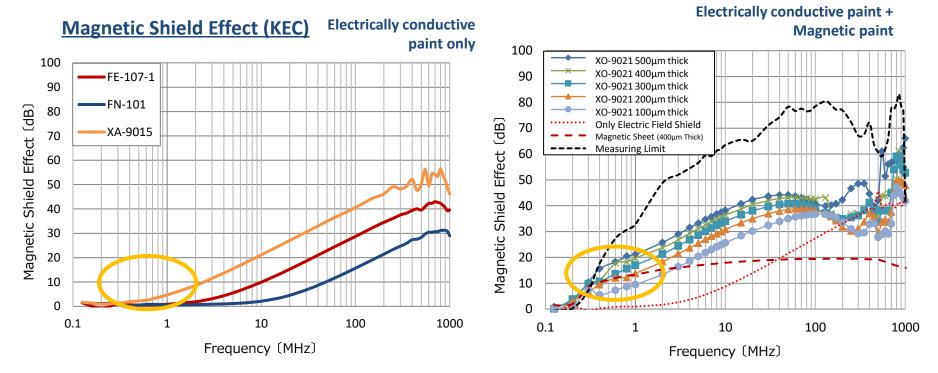
▶ Passes cross-cut test

Easily Applied to Complex Surfaces to Provide Shielding Effect

Wi-Fi Module Components

*Source: Nikkei Electronics

Casings for Various Electrical Appliances



- **➤ Lighter compared to metal casings**
- > Contributes to smaller, thinner electronic components
- ➤ Also used as EMI shielding in medical device casing (FE-107-1), electric scooter battery peripherals and automotive seat motor control boxes (FN-101)

Shield for "Low Frequency Magnetic Field Noise" that Electric Field Shield Materials Ineffective

Model	Resin	Filler	Application Method	Drying Conditions	Resistivity (Ω·cm)	Substrate
XO-9021	Urethane	Soft Magnetic Powder	Spray, coater, brush, dipping	25°C, 60 mins. or 50°C, 30 mins.	-	ABS, PC, etc.


- <u>Magnetic field shielding (magnetic paint) provides wide frequency coverage when combined with an</u> electric field shield (electrically conductive paint)
- > Achieves 10-20dB (70-90%) magnetic shielding effect in the AM radio noise band

RFID Tag (XO-9021 Sheet)

Noise Source: Circuit Board (XO-9052 Paint)

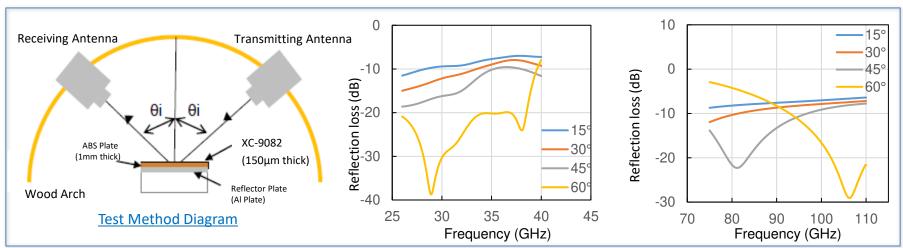
➤ Can be sprayed directly onto circuit boards with complex surfaces and mounted components. Provides shielding with simple spray application.

(*XO-9052 utilizes an electrically insulating magnetic powder, preventing shorts when used with circuit boards.)

- > Protects against interference of metals or moisture around RFID tags, improving reception.
- > Currently developing new formulas for various frequencies such as HF UHF bands.

High Frequency (30-300GHz) Wave Absorbing Paint

Model	Resin	Filler	Application Method	Drying Conditions	Resistivity (Ω·cm)	Substrate
XC-9082	Epoxy 2-Component	Special Carbon	Spray, coater, brush, dipping	25°C, 24 hrs. or 100°C, 60 mins.	1	Epoxy, phenol, metal, glass

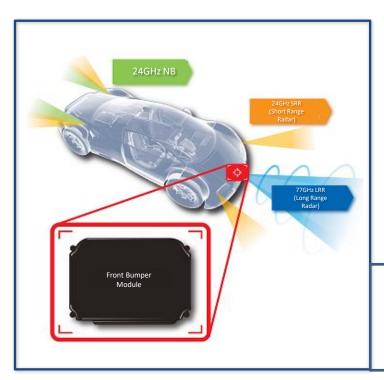

Dried Film Appearance

XC-9082 (Special Carbon)

- ➤ Effectively absorbs electromagnetic waves through dielectric absorption process provided by the special carbon filler in combination with the dielectric constant of the resin binder.
- > Absorption of 20dB (90%) realized as a thin film (150µm thickness)
- ➤ Ideal for use as a solution for millimeter wave radar casing (cavity) resonance.

Measurement of Reflection Loss in Free Space

5G • Millimeter Wave (Typical Use)


Can Be Used in 5G Equipment and Automotive Radar Applications

5G Repeater and Antenna

➤ 5G repeaters mounted on towers have weight limitations.

Weight reduction can be realized by combining painting application with the typical metal shield plate.

Can be sprayed directly on a resin case (on applicable resin substrates).

Automotive Millimeter Wave Radar

➤ Ideal for use as a solution for millimeter wave radar casing (cavity) resonance in automotive radar systems that are becoming more common.

Taking on Challenges and Working Together