

إلى 5a المجاورة (1.5a المجاورة 1.5a المجاورة 1.5a المجاورة 1.5a المجاورة (1.5a المجاورة 1.5a المجاو

9-11 April, 2025 | Brussels, Belgium

Why open-source?

- Cost-efficiency
- Customization
- Community support
 - Faster problem solving
- Complete transparency
 - Improved trust
 - Improved security

{J\$Ă snℓ

Japie van Tonder

/9h[†] {ľ∜s∎\$t**Ġ**Ŧ[Ġ

Björn Koneswarakantha

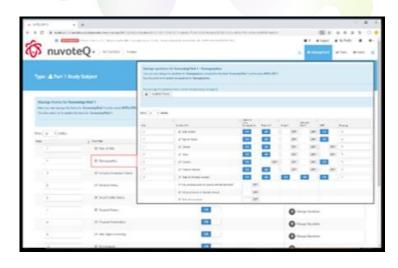
Principle
Quality Data
Scientist,
Roche

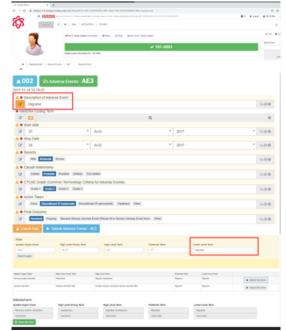
Isabel Glauß

Clinical Data Engineer, Boehringer Ingelheim

tś∰Ă Ç**IIIIA**s∎

Principal Clinical Data Scientist, Bayer




Automation of study-specific clinical database build and validation by leveraging common open-source software development tools

Japie van Tonder, Scigenix Pty Ltd

Introduction

YST/ LA SE SE EA FACTOR

Manual validation → Lack of automation leads to inconsistencies

- Slow process → Delayed study timelines
- Expensive & resource-heavy → Labor costs
- Limited adaptability → A lack of automation makes it difficult to scale processes efficiently

The Automation Framework – Overview

- Goal
 - Automate database validation ("UAT")

- How?
 - Programmatic approach using open-source tools
- Outcome
 - Faster, more reliable, and scalable database workflows

Modern Front-End Testing Frameworks

- a □ŕ ś'n {□źÖĂnś 5śōś ji s i c. JihoĂ l' L
 - Web development teams minimize manual testing by using automated front-end testing frameworks
 - Reduces human error, increases efficiency, and ensures consistency
- / D CODEC SET CS CONTROL CON
 - Cypress Fast, reliable end-to-end testing for modern web apps
 - Playwright Multi-browser automation, ideal for UI consistency checks
 - Jest & Mocha JavaScript-based testing frameworks for unit and integration tests
 - Many other frameworks
 #EMEA25

I ¤Ŏ LĊí dn\e nol'śle 'nśA\roo_

Setup testing framework to work with intended EDC

Database specs + validation test cases

Import test cases

Execute tests

Output + Validation report

- Initial setup
 - Programming link up specifications / testing framework / EDC
 - 2 months

- After automation
 - Execution of all tests reduced from roughly 2 days to 2 hours
 - 92% increase in efficiency
 - Test → Update → Re-test cycle significantly faster
 - Easily perform a re-test of the entire database with each post-production change
 - Ultimately increased build quality (no human error in testing)

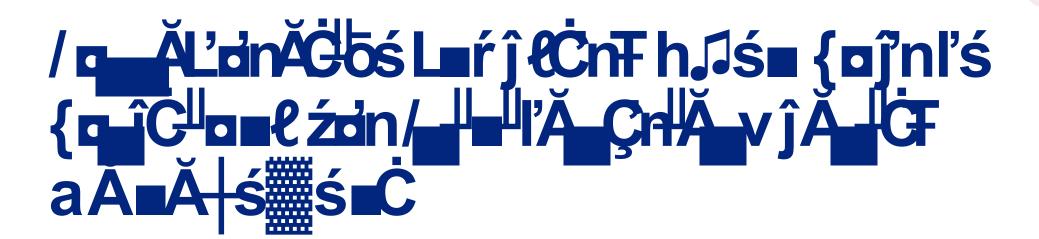
Benefits of Automation

Faster EDC deployment → Saves days/weeks of effort

Improved accuracy & consistency → Reduces human errors

Lower licensing costs → Open-source

Scalable & adaptable → Works with various EDC platforms


Conclusion

- / Ă i ! l' Ġ i
 - Consider adopting open-source tools in your workflows

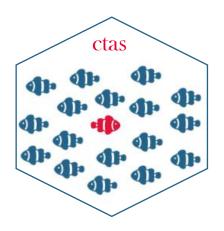
YŚŦÇĂŚĂŎĂŦ

"By leveraging automation and established software development practices, we can reduce human effort, improve accuracy, and accelerate clinical database deployment."

Björn Koneswarakantha, Hoffmann-La Roche

Cross Industry Organisation

Intercompany quality analytics consortium

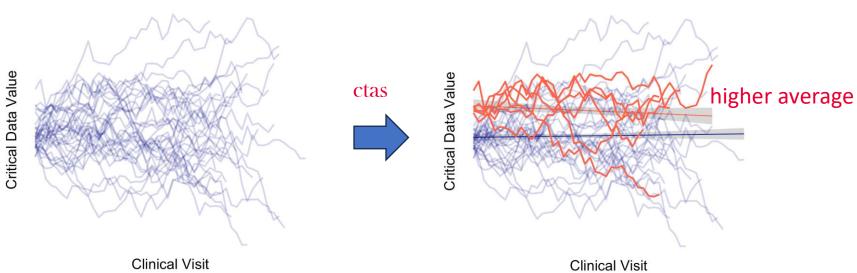

- Founded 2022
- 19 industry members
- https://impala-consortium.org/
- Statistical Open Source Packages
- Scientific Publications
- Quality Frameworks (RAPID, Quality Briefs)
- Joint Health Authority Engagement

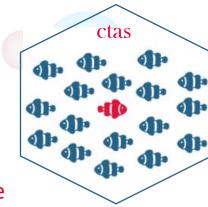
- Founded 2024
- > 3 industry members
- RBQM focus (Critical to Quality, Centralized Monitoring, Quality Tolerance Limits)
- 6 Projects
- Open Source Packages

Open Source Landscape – Quality Monitoring Clinical Trials

Quality Tolerance Limits.

https://github.com/ openpharma/rbqmR

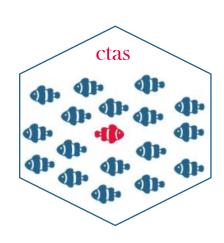



End to End RBQM Framework

- Mapping
- Processing
- Reporting

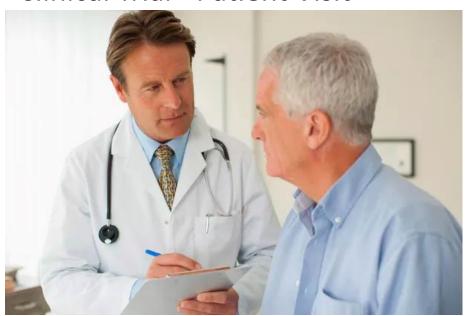
https://github.com/ Gilead-BioStats/gsm

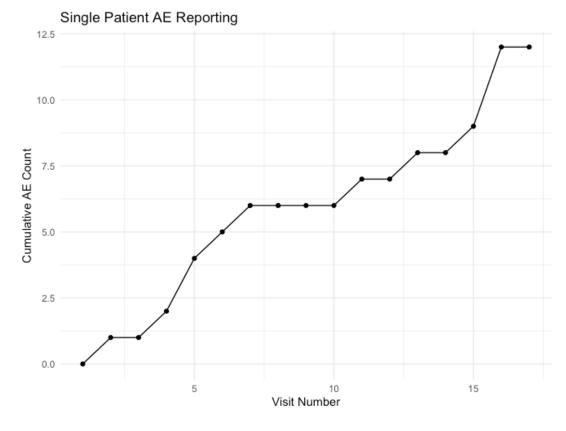
Collaborative Scientific Evaluation Within IMPALA Webinar recording on CTAS



https://github.com/IMPALA-Consortium/ctas

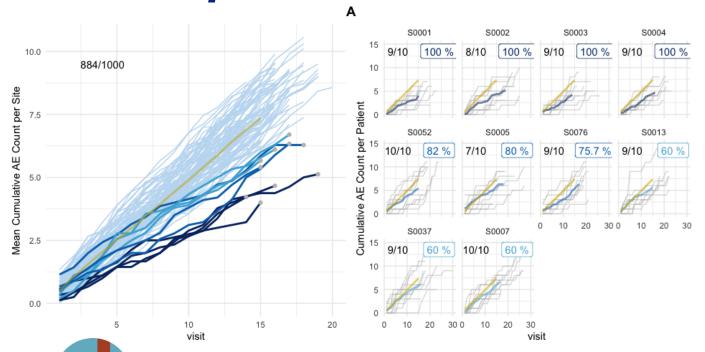
- CTAS (Clinical Trial Anomaly Spotter) is a CSM tool focused on identifying anomalous time series of continuous variables.
- "Unsupervised" tool which does not use pre-specified KRIs.
- Originally developed by Bayer where it is available for all company studies.
- Code base shared with IMPALA for co-development in July 2023.





Adverse Event Reporting in Clinical Trials - Patient

Clinical Trial - Patient Visit

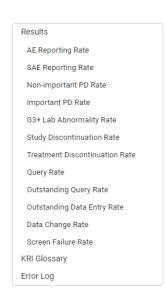


{simaerep} Calculate Event Reporting Probabilities

Bootstrap - Simulations

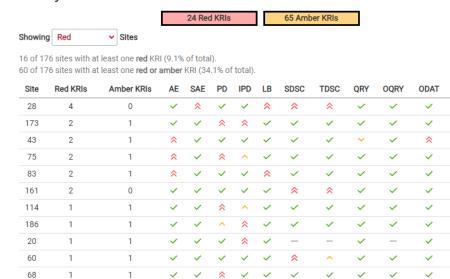
Collaborative Scientific Evaluation Within IMPALA https://doi.org/10.1007/s43441-024-00631-8

https://github.com/IMPALA-Consortium/ctas https://impala-consortium.github.io/gsm.simaerep/


simaerep

{gsm} – Good Statistical Monitoring

AA-AA-000-0000 Assessment Overview


Generated with the Good Statistical Monitoring {gsm} package

Study Overview

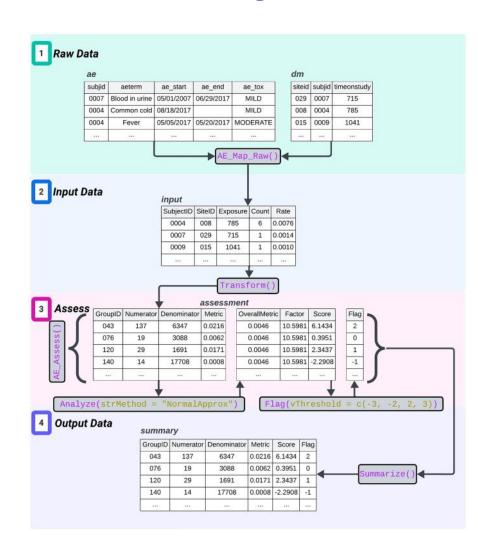
78 145

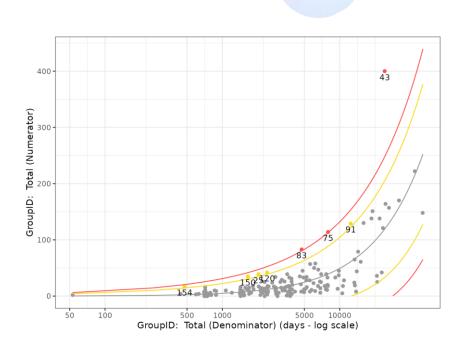
32

62

https://github.com/Gilead-BioStats/gsm

https://doi.org/10.1007/s43441-024-00651-4

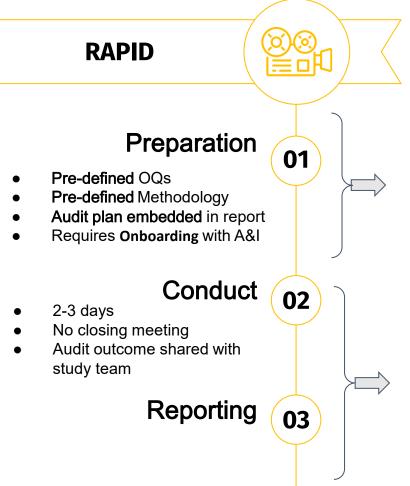

{gsm} – Good Statistical Monitoring



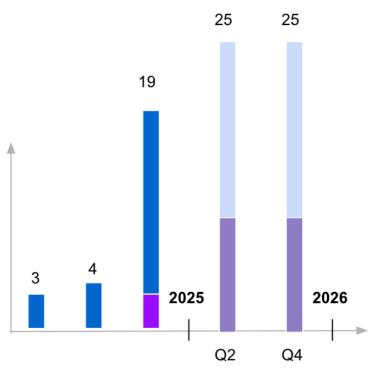
End to End RBQM Framework

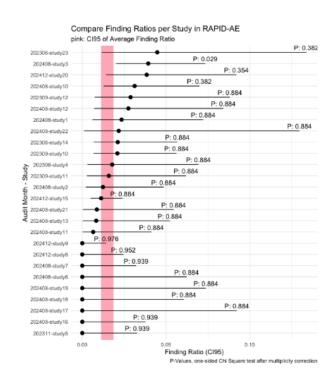
- Mapping
- Processing
- Reporting

https://github.com/ Gilead-BioStats/gsm



RAPID Audits


- Maintain Industry Standard
- Pre-Defined Methodology
- Based on Data Analytics
- High Coverage
- Fast
- Minimal Preparation Time


w. tL5 !9 □! rosnes 9os ©C

Audit Process Objective Questions: - AE Late-Reporting - AE Under-Reporting Statistical Signal z-scores Issues Document Site Monitoring Review Reports

Studies Audited

Portfolio Oversight

Finding

Positive

Affirmation

Outlook

- RBQMverse metapackage suite similar to pharmaverse (metapackage for data submission)
- Increase Inter-Operability
- Continued Release of gsm extensions

Thank You

DaVinci: A Modular R/Shiny Framework for Interactive Data Visualization in Clinical Research

Isabel Glauß, Boehringer Ingelheim

Agenda

- Interactive Data Visualization with R/Shiny
- → Modular Approach
- DaVinci Framework
- DaVinci Modules and their Use Cases
- How to Set Up a DaVinci App
- Our Open-Source Commitment

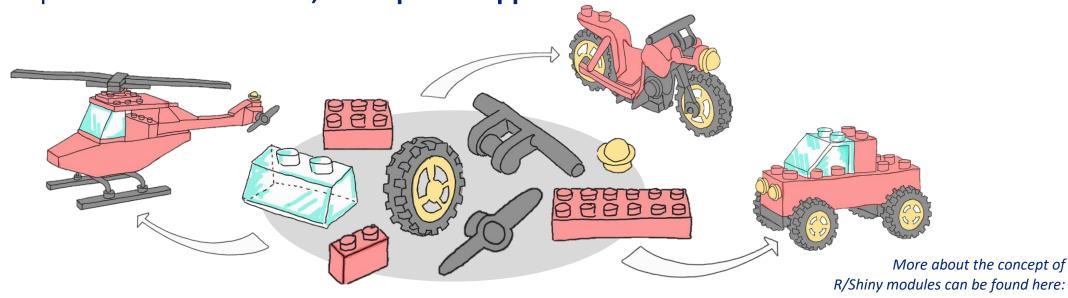
Disclaimer

The views and opinions
expressed in this
presentation are those of
the presenter and not
necessarily those of
Boehringer Ingelheim.
Boehringer Ingelheim does
not guarantee the
accuracy or reliability of
the information provided
herein.

Interactive Data Visualization with R/Shiny

- Regular data reviews are key in clinical trials
 - → Examples: data exploration, quality monitoring, safety reviews, etc.
- Traditional data review based on extensive static outputs are cumbersome to handle and may not immediately reveal all insights
- Better solution: Interactive R/Shiny apps with real-time access to clinical data

83% of our trial teams using DaVinci apps see a (strong) positive business impact regarding speed & value compared to static outputs

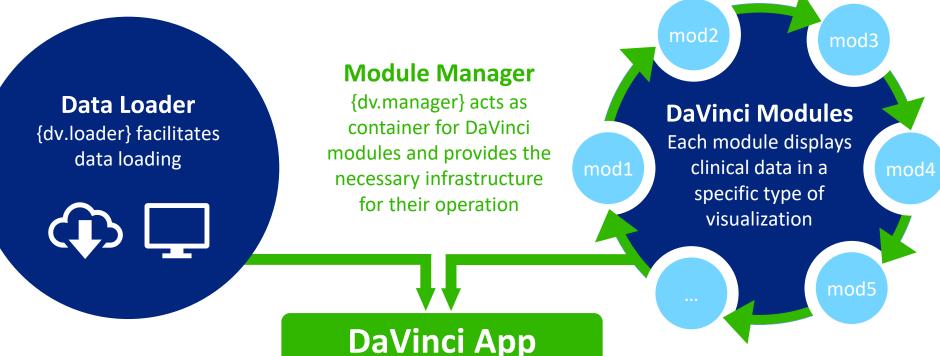

What is R/Shiny?

- R is an open-source programming language mostly used for data analysis, statistical computing and graphics
- {shiny} is an R
 package for creating
 web apps using R code
 - shiny.posit.co

The Modular Approach

- One comprehensive stand-alone app that satisfies the needs of as many studies as possible quickly becomes unwieldy with trial-specific adjustments being impossible
- Therefore: DaVinci provides R/Shiny modules which serve as functional building blocks that can be composed into customized, trial-specific apps

mastering-shiny.org/scaling-modules


The DaVinci Framework

Main Components

DaVinci (= **Da**ta **Vi**sualizatio**n** for **C**linical **I**nsights) provides a modular framework with a rich and growing set of R/Shiny modules to review and explore

clinical trial data

interactively

The DaVinci Framework

Key Features

List of modules

Bookmarking

DaVinci Module Gallery

... and example use cases

Safety Review, Clinical Quality Monitoring

Patient Profile	Clinical Timelines {dv.clinlines}	eDISH Plot	Hierarchy Table
{dv.papo}		{dv.edish}	{dv.tables}
Lineplot {dv.explorer.parameter}	Boxplot {dv.explorer.parameter}	Correlation Heatmap {dv.explorer.parameter}	Forest Plot {dv.explorer.parameter}
ROC curve {dv.explorer.parameter}	Scatterplot {dv.explorer.parameter}	Matrix of Scatterplots {dv.explorer.parameter}	Waterfall Plus Heatmap {dv.explorer.parameter}
Listings	Bookmark Manager	Further modules are already in the pipeline	Exploratory Parameter
{dv.listings}	{dv.bookman}		Analysis

Any use case

The DaVinci Workflow

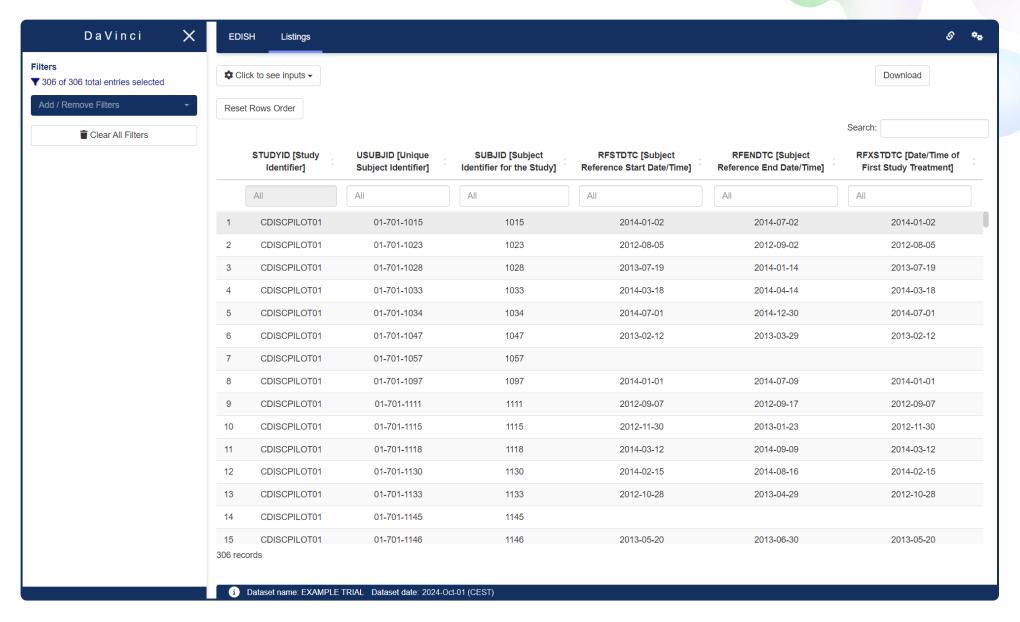
How to Set Up a DaVinci app

Note:

DaVinci can handle any data source, including SDTM and ADaM. Raw data may require further preprocessing.

Load data

Specify


Launch

```
01 # I) LOAD DATA ---
02 data list <- dv.loader::load data(
    sub dir = "path/to/data",
    file names = c("dm", "ae", "lb")
05 )
06
07 # II) PREPROCESSING ---
08 data list$dm <- dv.listings::convert data(data list$dm)</pre>
09 data list$ae <- dv.listings::convert data(data list$ae)
10 data list$lb <- dv.listings::convert data(data list$lb)</pre>
12 # III) SPECIFY MODULES ---
13 edish <- dv.edish::mod edish(</pre>
    module id = "mod1",
    subject level dataset name = "dm",
    lab dataset name = "lb",
    baseline visit val = "SCREENING 1"
17
18 )
19 listings <- dv.listings::mod listings(</pre>
    module id = "mod2",
    dataset names = c("dm", "ae", "lb")
22 )
23
24 # IV) LAUNCH APP ---
25 dv.manager::run app(
    data = list("EXAMPLE TRIAL" = data list),
    module list = list("EDISH" = edish, "Listings" = listings),
28
    filter data = "dm"
29 )
```


Our Open-Source Commitment

After several years of in-house user research and development, DaVinci is now open-source and available on GitHub!

• DaVinci homepage:

https://boehringer-ingelheim.github.io/davinci

• DaVinci repositories:

https://github.com/orgs/Boehringer-

<u>Ingelheim/repositories?q=dv.</u>

Benefits of open-sourcing DaVinci:

- Makes our packages accessible to others
- Encourages enhancements and direct contributions from the community

Homepage

Repositories

Thank you! Any questions?

In case of questions please contact:

Isabel Glauß
isabel.glauss@boehringer-Ingelheim.com