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The limit of classical computation

“I’m not happy with all the 
analysis that go with just 
classical theory, because 
nature isn’t classical, 
dammit. And if you want to 
make a simulation of 
nature, you’d better make it 
quantum mechanical, and, 
by golly, it’s a wonderful 
problem because it doesn’t 
look so easy” 
Feynman 1982   

“The underlying physical 
laws necessary for the 
mathematical theory of a 
large part of physics [ ... ] are 
completely known, and the 
difficulty is only that the 
exact application of these 
laws leads to equations 
much too complicated to be 
soluble. It therefore 
becomes desirable that 
approximate practical 
methods [...] should be 
developed...”
Dirac 1929   
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Introduction to quantum computing

When working with one bit, we can either have 1 or 0, 

nothing more, we’re stuck in a discrete space.

A qubit, or a quantum bit, is a vector in the two-dimensional 

complex vector space C2 that can take any value within the 

space between 0 and 1. It is the unit of information we work 

on in quantum computing.

https://javafxpert.github.io/grok-bloch/ 
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Introduction to quantum computing

A qubit, or a quantum bit, is a vector in the two-dimensional 

complex vector space C2 that can be written as a 

combination of |0⟩ and |1⟩: 

|0⟩ = 1	0	 and    |1⟩ = 0	1	

|0⟩ and |1⟩ are called ket zero and ket one. These two 

vectors form what we call the computational basis for the 

one-qubit space.
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Introduction to quantum computing

Any qubit can be written as a superposition of |0⟩ and |1⟩ :

a |0⟩ + b |1⟩ = %	&	
Where a and b are complex numbers called amplitudes and 

verify

|a|2 + |b|2 = 1

The normalization constraint comes from the fact that we 

work with probability amplitudes.
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Introduction to quantum computing

It is possible to generalize these notations to several qubits. For 2 qubits, the computational basis will be

00 = 0 ⊗ 0 =
1
0
0
0

, 01 = 0 ⊗ 1  =
0
1
0
0

10 = 1 ⊗ 0 =
0
0
1
0

, 11 = 1 ⊗ 1 =
0
0
0
1
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Introduction to quantum computing

Any 2-qubit state can be written as a combination of the 4 qubits : 

a |00⟩ + b |01⟩ + c |10⟩ + d |11⟩  
where a, b, c, and d are complex numbers called amplitudes and verify 

|a|2 + |b|2 + |c|2 + |d|2 = 1

For n qubits, all possible bitstring will form the computational basis (2! elements) and every n-qubit state can be 

written as a superposition of the basis states. We’re working in a 2! dimensional space, its growth is exponential.
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Introduction to quantum computing

All information and results of a qubit are not directly

available to us, we need to measure the state. It will

force the qubit to collapse to |0⟩ or |1⟩ by observing it, 

where
• |a|2 is the probability we will get |0⟩ when we measure

• |b|2 is the probability we will get |1⟩ when we measure

Repeated measurement is needed to approximate the 

statistical distribution of the qubit.
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Introduction to quantum computing

11

When working with a multi-qubits state, 
entanglement describes the fact that qubits can’t be
separated.
For example, we can write

1
2 (	|00⟩ 	+	 |01⟩) 	=

1
2	|0⟩ ⊗ (|0⟩ 	+	 |1⟩)

but we cannot write
1
2 (	|00⟩ 	+	 |11⟩) ≠ |0⟩ ⊗ |1⟩

as the “product” of two single qubit states.

Once you measure the first qubit, 
the second is uniquely determined.

|0i

|0i

H

�

|00i+|11ip
2

!
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Introduction to quantum computing

Similarly to classical gates such as AND or NOT, 

the quantum state will evolve through quantum 

gates. Based on the normalization constraint of a 

quantum state, a gate will be unitary, and 

therefore reversible.

A quantum circuit is a set of quantum gates that

we will apply to the quantum state. A quantum 

algorithm will use a quantum circuit as a routine.
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Introduction to quantum computing

The Pauli gates are a set of 1-qubit operations that

play a groudn role in quantum computing. Each gate

represent a rotation of 180 degres over the

respectives axis of the Bloch sphere.

X is known as the NOT gate, or bit flip.

Z is known as the phase flip.
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Introduction to quantum computing

The Hadamard gate is a 1-qubit operation that maps

the two qubits states into an equal superposition

between them.

The square of the Hadamard gate is equal to the

identity : applying twice the gate is equivalent to doing

nothing.
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Introduction to quantum computing

The CX gate, or CNOT gate, is a 2-qubit operation that

applies the X gate on the qubit target depending on

the value of the control target. If the control is equal to

1, then the target qubit flips.
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CX = 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, 

0!| ⟩00 = | ⟩00
0!| ⟩01 = | ⟩01
0!| ⟩10 = | ⟩11
0!| ⟩11 = | ⟩10



Introduction to quantum computing

We inherit some rules from quantum mechanics : 

è No-cloning theorem : we cannot copy any arbitrary state |2⟩ = a |0⟩ + b |1⟩ into another arbitrary state.

è In order to copy a state, you would have to access its information è collapsing through the measure

è Get the information by applying controlled gates on qubits è we introduce entanglement and qubits are not 

independent anymore

è No-deleting theorem : we saw gates are unitary so reversible, being able to delete a state would be in 

contradiction with it.
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