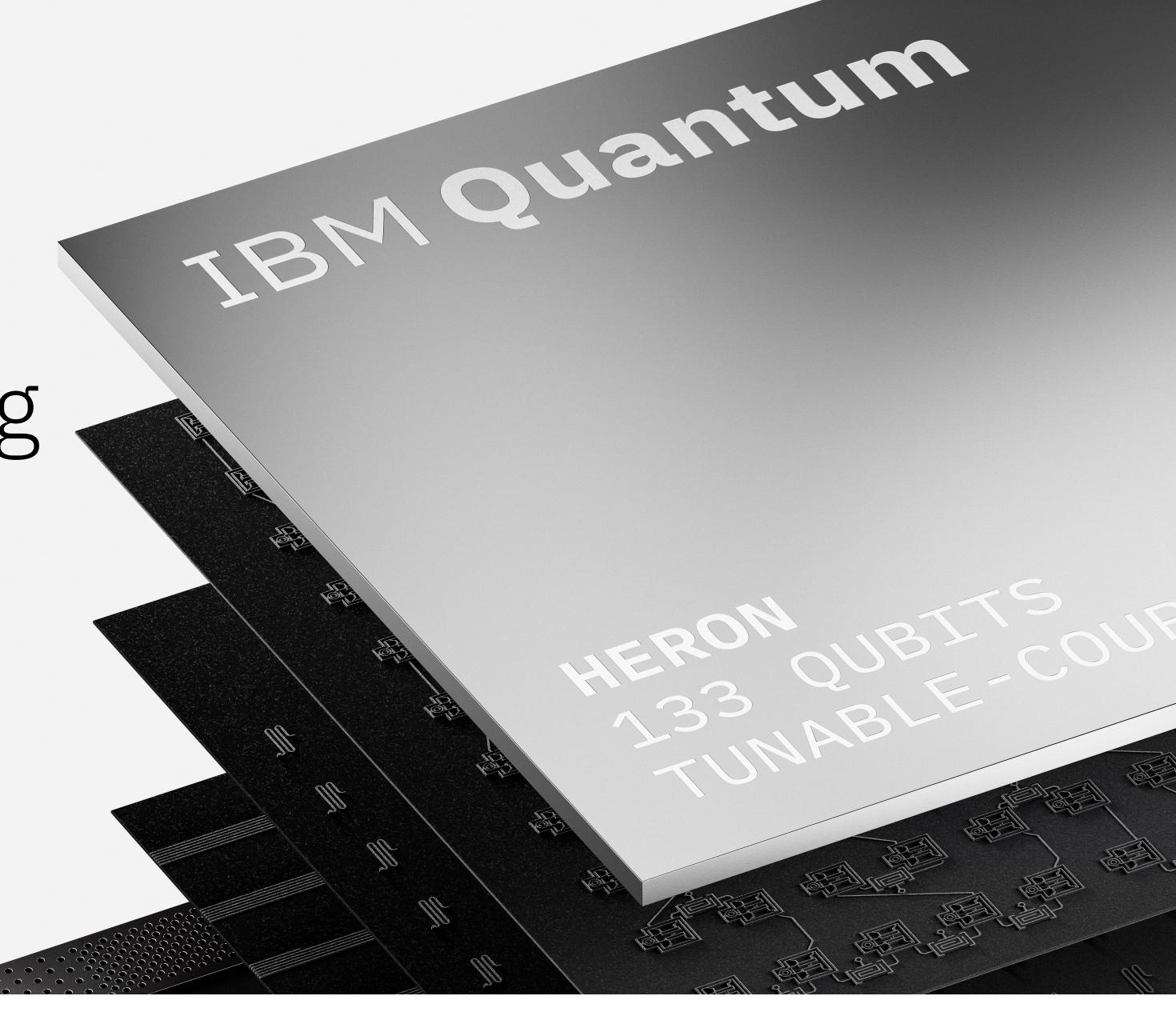
IBM Quantum

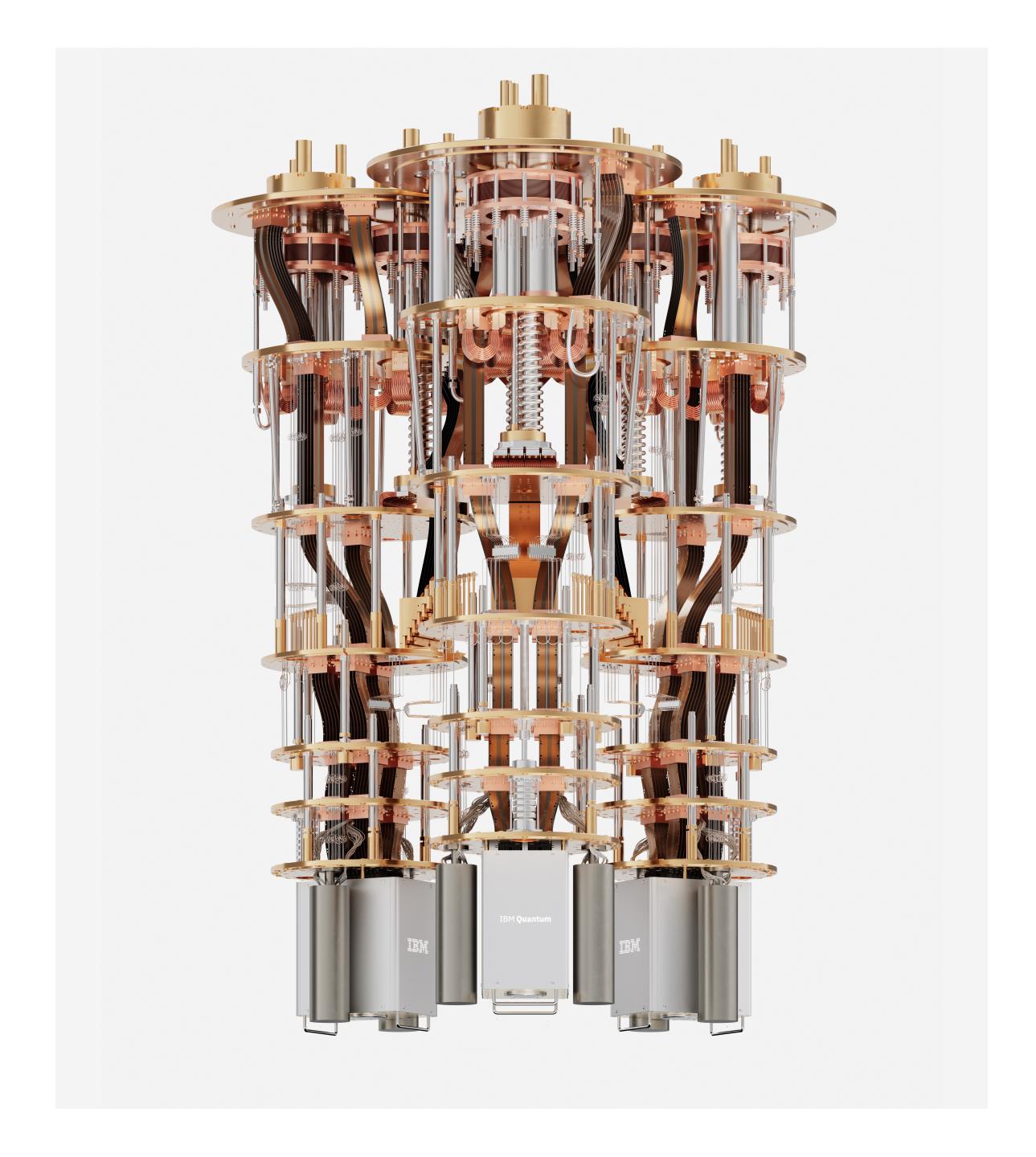
Introduction to Quantum Computing and Qiskit



IBM Quantum

Introduction to Quantum Computing and Qiskit

- Introduction to quantum computing
- Getting started with the platform
- Introduction to qiskit
 - How to build, transpile, run a circuit
- How to look at your access with Qiskit
 - Instances and backends
 - List jobs or backends with filterings
- How to do basic troubleshooting with Qiskit
- Links to go further



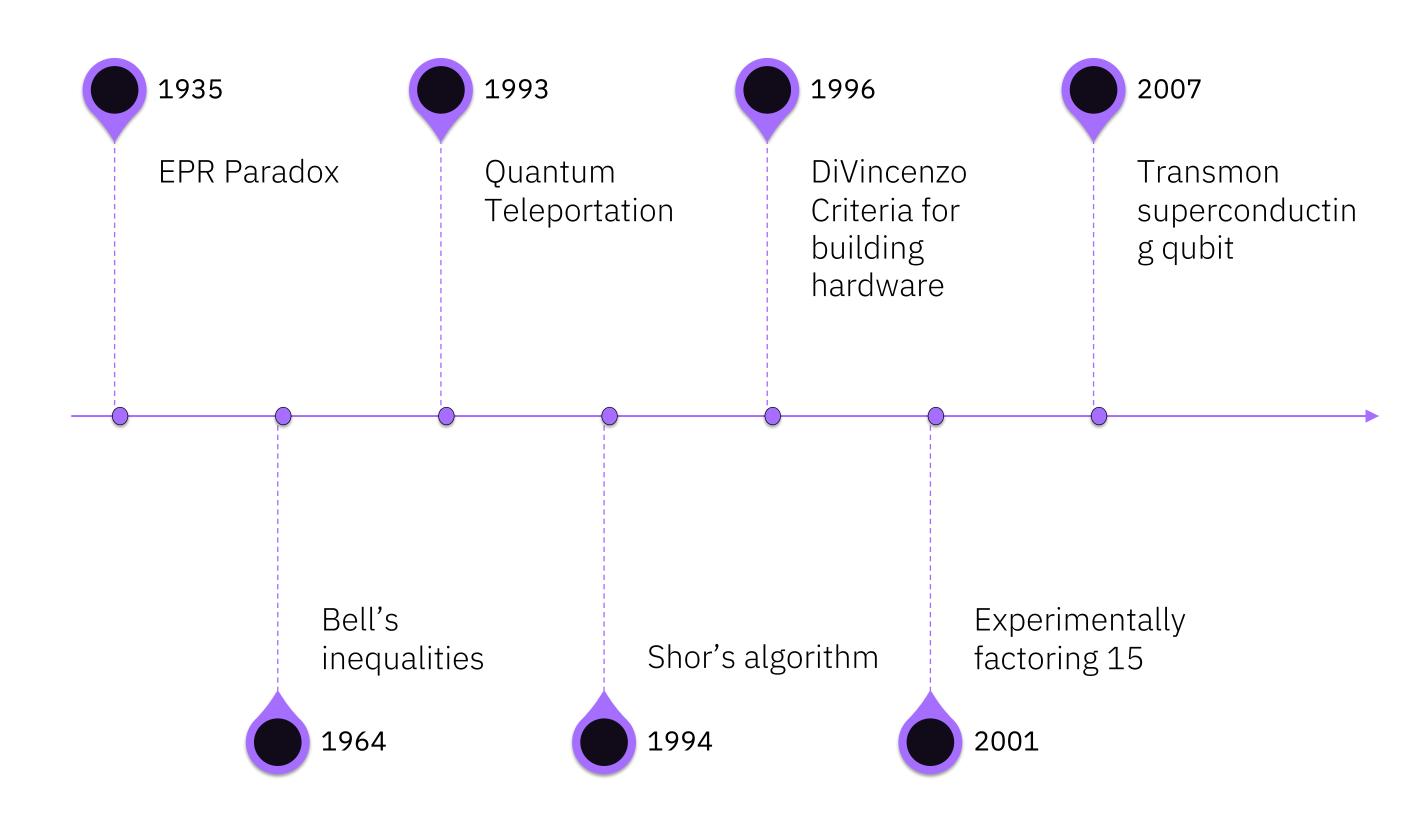
The limit of classical computation

"The underlying physical laws necessary for the mathematical theory of a large part of physics [...] are completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods [...] should be developed..."

Dirac 1929

"I'm not happy with all the analysis that go with just classical theory, because nature isn't classical, dammit. And if you want to make a simulation of nature, you'd better make it quantum mechanical, and, by golly, it's a wonderful problem because it doesn't look so easy"

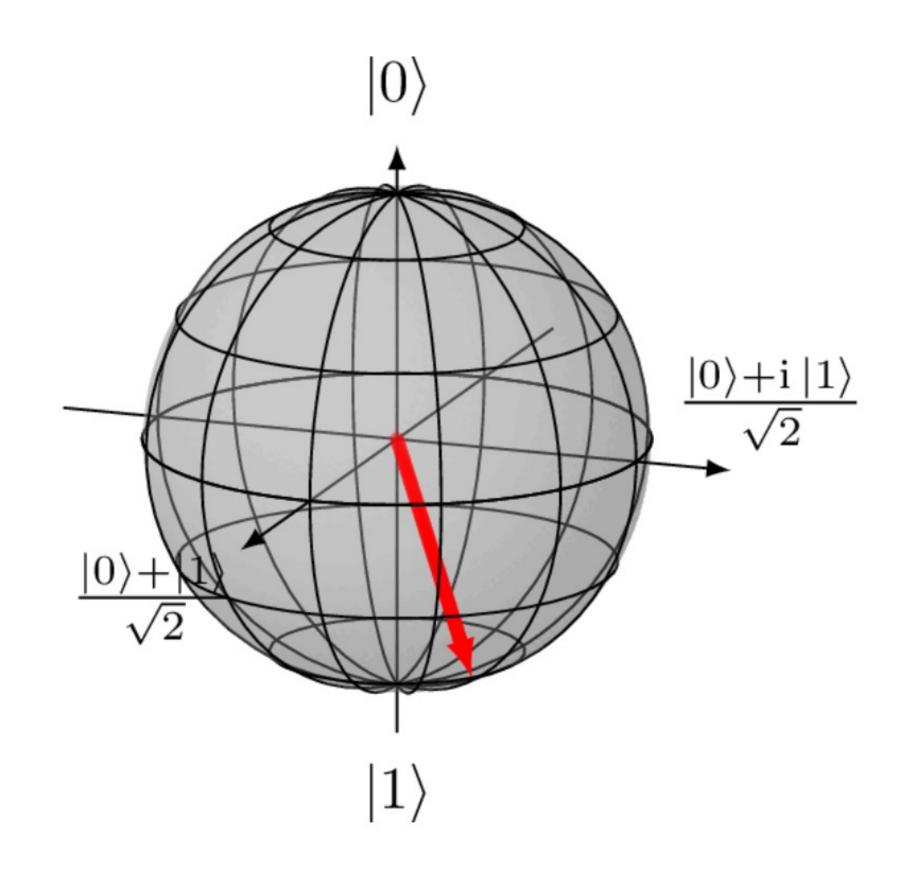
Feynman 1982



When working with one bit, we can either have 1 or 0, nothing more, we're stuck in a discrete space.

A qubit, or a quantum bit, is a vector in the two-dimensional complex vector space \mathbb{C}^2 that can take any value within the space between 0 and 1. It is the unit of information we work on in quantum computing.

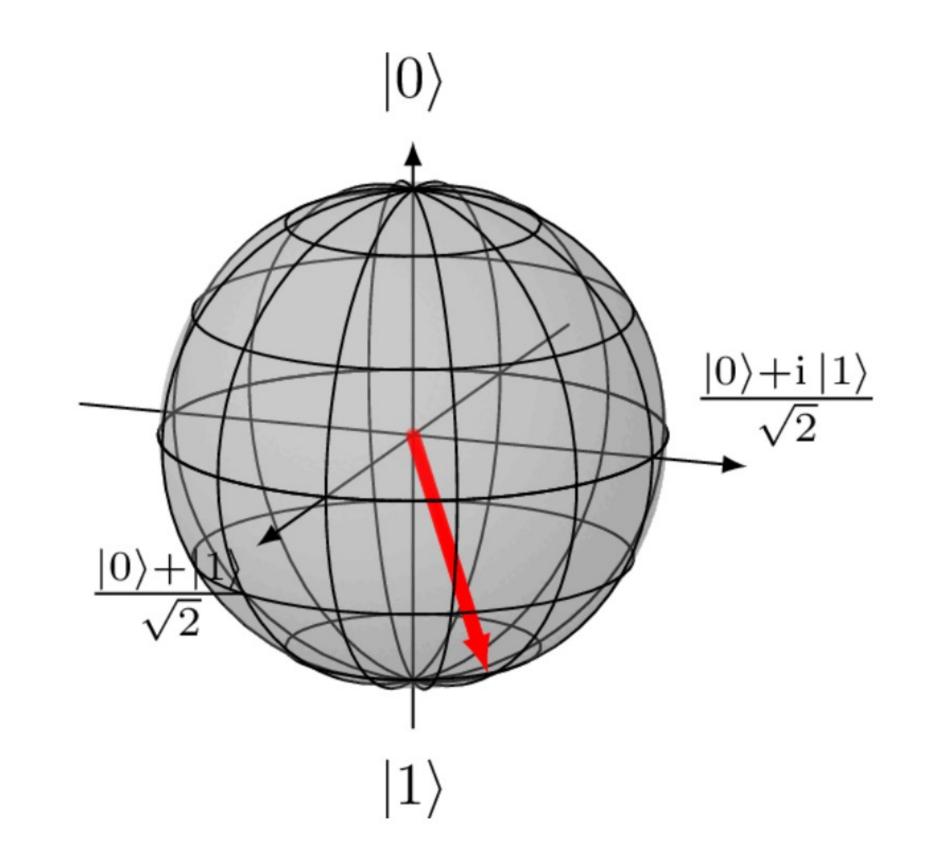
https://javafxpert.github.io/grok-bloch/



A qubit, or a quantum bit, is a vector in the two-dimensional complex vector space \mathbb{C}^2 that can be written as a combination of $|0\rangle$ and $|1\rangle$:

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

|0) and |1) are called *ket zero* and *ket one*. These two vectors form what we call the **computational basis** for the one-qubit space.



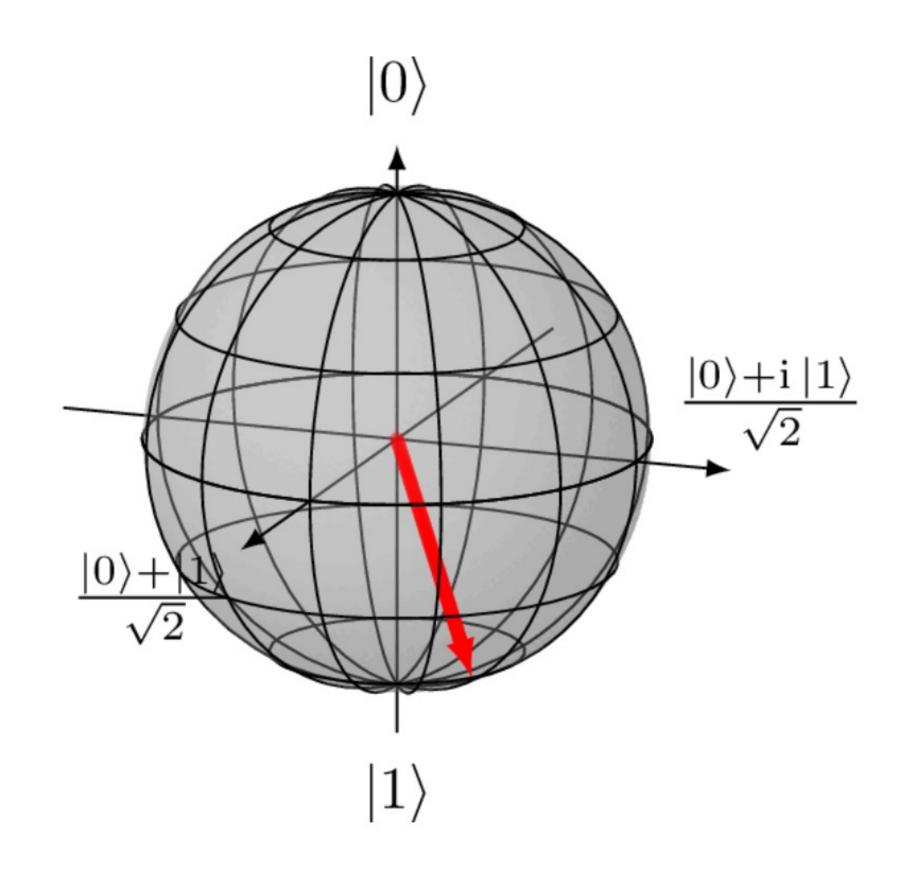
Any qubit can be written as a superposition of $|0\rangle$ and $|1\rangle$:

$$a \mid 0 \rangle + b \mid 1 \rangle = \begin{bmatrix} a \\ b \end{bmatrix}$$

Where α and b are complex numbers called **amplitudes** and verify

$$|a|^2 + |b|^2 = 1$$

The **normalization** constraint comes from the fact that we work with probability amplitudes.



It is possible to generalize these notations to several qubits. For 2 qubits, the computational basis will be

$$|00\rangle = |0\rangle \otimes |0\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \qquad |01\rangle = |0\rangle \otimes |1\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$$

$$|10\rangle = |1\rangle \otimes |0\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad |11\rangle = |1\rangle \otimes |1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Any 2-qubit state can be written as a combination of the 4 qubits:

$$a \mid 00\rangle + b \mid 01\rangle + c \mid 10\rangle + d \mid 11\rangle$$

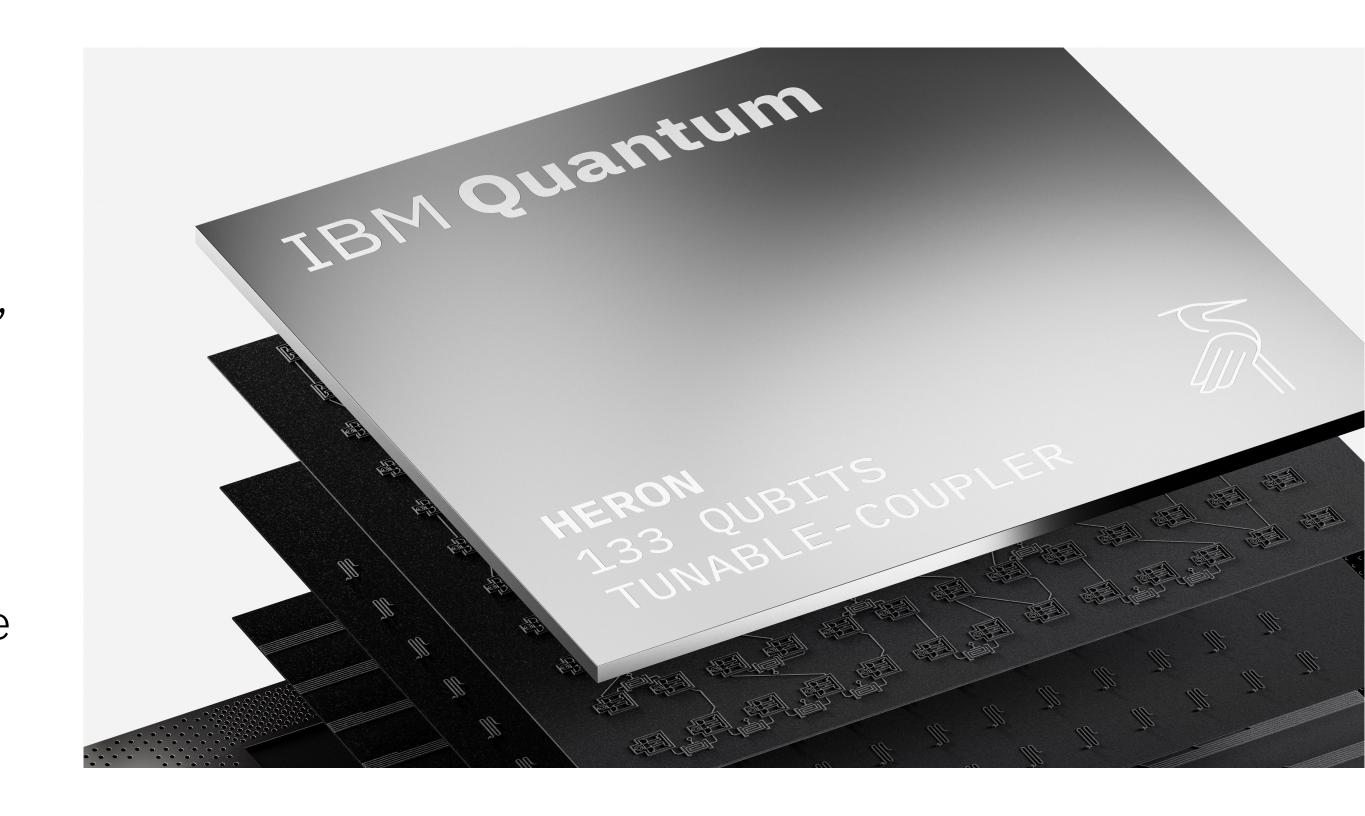
where a, b, c, and d are complex numbers called amplitudes and verify

$$|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$$

For n qubits, all possible bitstring will form the computational basis (2^n elements) and every n-qubit state can be written as a superposition of the basis states. We're working in a 2^n dimensional space, its growth is exponential.

All information and results of a qubit are not directly available to us, we need to **measure** the state. It will force the qubit to **collapse** to $|0\rangle$ or $|1\rangle$ by observing it, where

- $|\alpha|^2$ is the probability we will get $|0\rangle$ when we measure
- $|b|^2$ is the probability we will get $|1\rangle$ when we measure Repeated measurement is needed to approximate the statistical distribution of the qubit.



© 2024 IBM Corporation

When working with a multi-qubits state, entanglement describes the fact that qubits can't be separated.

For example, we can write

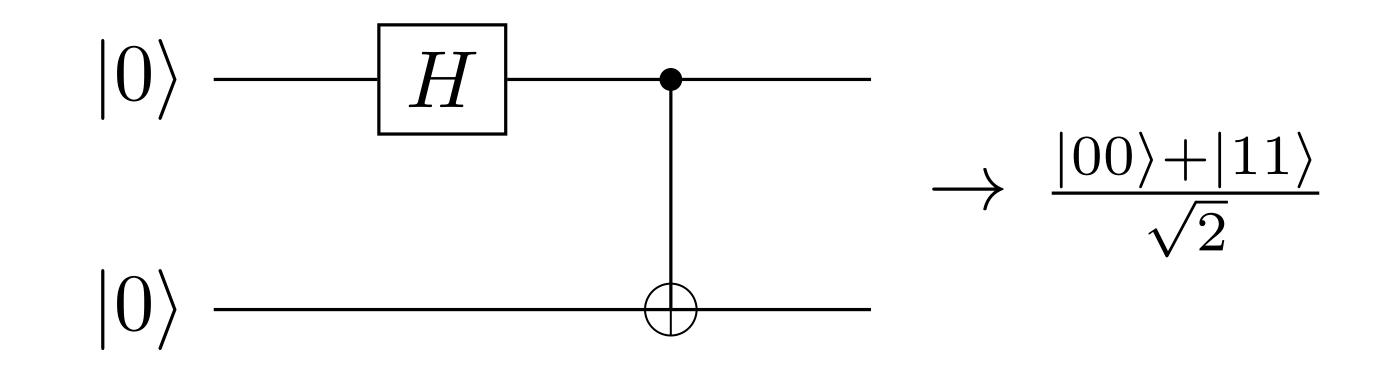
$$\frac{1}{\sqrt{2}}(|00\rangle + |01\rangle) = \frac{1}{\sqrt{2}}|0\rangle \otimes (|0\rangle + |1\rangle)$$

but we cannot write

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \neq |\alpha\rangle \otimes |\beta\rangle$$

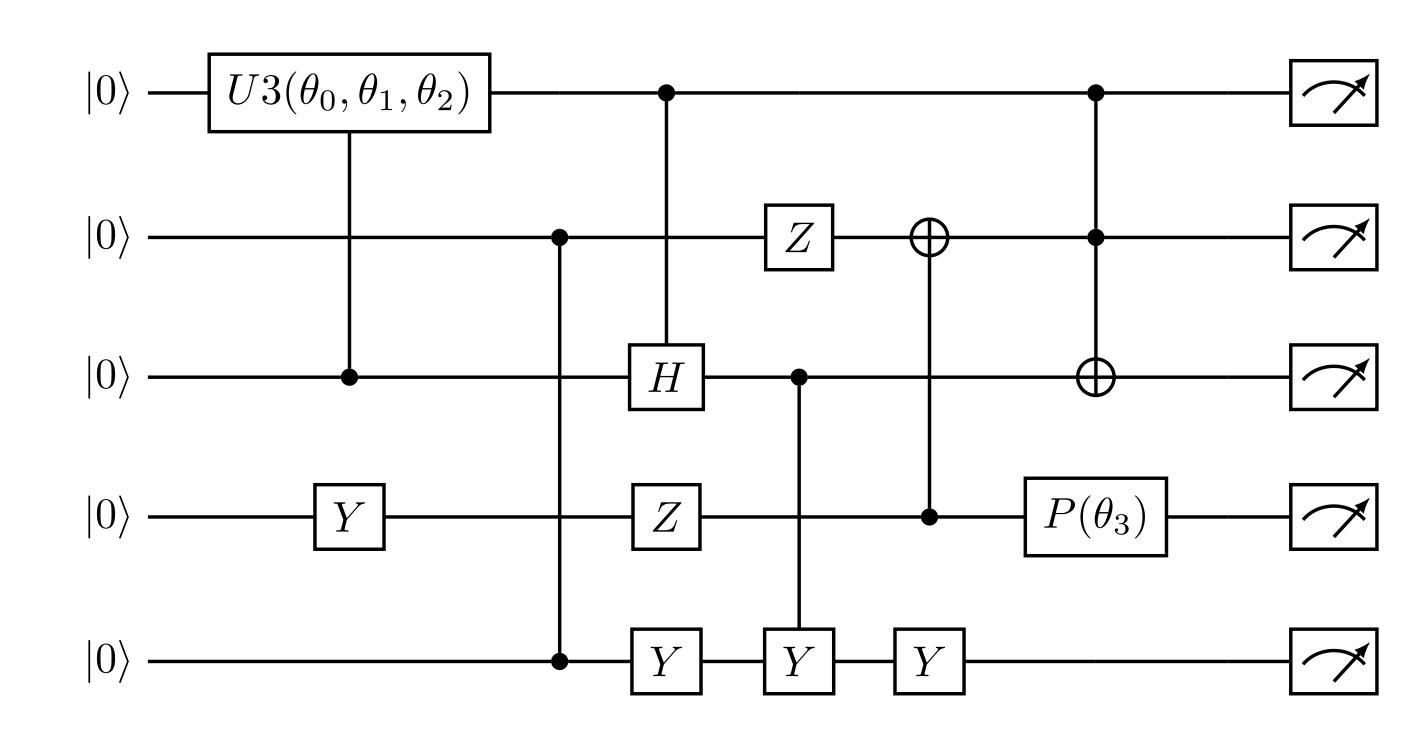
as the "product" of two single qubit states.

Once you measure the first qubit, the second is uniquely determined.



Similarly to classical gates such as AND or NOT, the quantum state will evolve through quantum gates. Based on the normalization constraint of a quantum state, a gate will be unitary, and therefore reversible.

A quantum circuit is a set of quantum gates that we will apply to the quantum state. A quantum algorithm will use a quantum circuit as a routine.



© 2024 IBM Corporation

The Pauli gates are a set of 1-qubit operations that play a groudn role in quantum computing. Each gate represent a rotation of 180 degres over the respectives axis of the Bloch sphere.

X is known as the NOT gate, or bit flip.

Z is known as the phase flip.

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{cases} X|0\rangle = |1\rangle \\ X|1\rangle = |0\rangle \end{cases}$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{cases} Y|0\rangle = i|1\rangle \\ Y|1\rangle = -i|0\rangle$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{cases} Z|0\rangle = |0\rangle \\ Z|1\rangle = -|1\rangle \end{cases}$$

The Hadamard gate is a 1-qubit operation that maps the two qubits states into an equal superposition between them.

The square of the Hadamard gate is equal to the identity: applying twice the gate is equivalent to doing nothing.

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\begin{cases} H|0\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} = |+\rangle \\ H|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} = |-\rangle \end{cases}$$

15

The CX gate, or CNOT gate, is a 2-qubit operation that applies the X gate on the qubit target depending on the value of the control target. If the control is equal to 1, then the target qubit flips.

$$CX = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{cases} CX|00\rangle = |00\rangle \\ CX|01\rangle = |01\rangle \\ CX|10\rangle = |11\rangle \\ CX|11\rangle = |10\rangle \end{cases}$$

We inherit some rules from quantum mechanics:

- No-cloning theorem: we cannot copy any arbitrary state $|\psi\rangle = \alpha |0\rangle + b |1\rangle$ into another arbitrary state.
 - \rightarrow In order to copy a state, you would have to access its information \rightarrow collapsing through the measure
 - → Get the information by applying controlled gates on qubits → we introduce entanglement and qubits are not independent anymore
- → No-deleting theorem : we saw gates are unitary so reversible, being able to delete a state would be in contradiction with it.

© 2024 IBM Corporation